@article{MuraliHaendel2022, author = {Murali, Supriya and H{\"a}ndel, Barbara}, title = {Motor restrictions impair divergent thinking during walking and during sitting}, series = {Psychological Research}, volume = {86}, journal = {Psychological Research}, number = {7}, issn = {1430-2772}, doi = {10.1007/s00426-021-01636-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267722}, pages = {2144-2157}, year = {2022}, abstract = {Creativity, specifically divergent thinking, has been shown to benefit from unrestrained walking. Despite these findings, it is not clear if it is the lack of restriction that leads to the improvement. Our goal was to explore the effects of motor restrictions on divergent thinking for different movement states. In addition, we assessed whether spontaneous eye blinks, which are linked to motor execution, also predict performance. In experiment 1, we compared the performance in Guilford's alternate uses task (AUT) during walking vs. sitting, and analysed eye blink rates during both conditions. We found that AUT scores were higher during walking than sitting. Albeit eye blinks differed significantly between movement conditions (walking vs. sitting) and task phase (baseline vs. thinking vs. responding), they did not correlate with task performance. In experiment 2 and 3, participants either walked freely or in a restricted path, or sat freely or fixated on a screen. When the factor restriction was explicitly modulated, the effect of walking was reduced, while restriction showed a significant influence on the fluency scores. Importantly, we found a significant correlation between the rate of eye blinks and creativity scores between subjects, depending on the restriction condition. Our study shows a movement state-independent effect of restriction on divergent thinking. In other words, similar to unrestrained walking, unrestrained sitting also improves divergent thinking. Importantly, we discuss a mechanistic explanation of the effect of restriction on divergent thinking based on the increased size of the focus of attention and the consequent bias towards flexibility.}, language = {en} } @article{BrychMuraliHaendel2021, author = {Brych, Mareike and Murali, Supriya and H{\"a}ndel, Barbara}, title = {The Role of Blinks, Microsaccades and their Retinal Consequences in Bistable Motion Perception}, series = {Frontiers in Psychology}, volume = {12}, journal = {Frontiers in Psychology}, issn = {1664-1078}, doi = {10.3389/fpsyg.2021.647256}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235217}, year = {2021}, abstract = {Eye-related movements such as blinks and microsaccades are modulated during bistable perceptual tasks. However, if they play an active role during internal perceptual switches is not known. We conducted two experiments involving an ambiguous plaid stimulus, wherein participants were asked to continuously report their percept, which could consist of either unidirectional coherent or bidirectional component movement. Our main results show that blinks and microsaccades did not facilitate perceptual switches. On the contrary, a reduction in eye movements preceded the perceptual switch. Blanks, on the other hand, thought to mimic the retinal consequences of a blink, consistently led to a switch. Through the timing of the blank-introduced perceptual change, we were able to estimate the delay between the internal switch and the response. This delay further allowed us to evaluate that the reduction in blink probability co-occurred with the internal perceptual switch. Additionally, our results indicate that distinct internal processes underlie the switch to coherent vs. component percept. Blanks exclusively facilitated a switch to the coherent percept, and only the switch to coherent percept was followed by an increase in blink rate. In a second study, we largely replicated the findings and included a microsaccade analysis. Microsaccades only showed a weak relation with perceptual switches, but their direction was correlated with the perceived motion direction. Nevertheless, our data suggests an interaction between microsaccades and blinks by showing that microsaccades were differently modulated around blinks compared with blanks. This study shows that a reduction in eye movements precedes internal perceptual switches indicating that the rate of blinks can set the stage for a reinterpretation of sensory input. While a perceptual switch based on changed sensory input usually leads to an increase in blink rate, such an increase was only present after the perceptual switch to coherent motion but absent after the switch to component percept. This provides evidence of different underlying mechanism or internal consequence of the two perceptual switches and suggests that blinks can uncover differences in internal percept-related processes that are not evident from the percept itself.}, language = {en} } @phdthesis{Murali2023, author = {Murali, Supriya}, title = {Understanding the function of spontaneous blinks by investigating internally and externally directed processes}, doi = {10.25972/OPUS-28747}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287473}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Humans spontaneously blink several times a minute. These blinks are strongly modulated during various cognitive task. However, the precise function of blinking and the reason for their modulation has not been fully understood. In the present work, I investigated the function of spontaneous blinks through various perceptual and cognitive tasks. Previous research has revealed that blinks rates decrease during some tasks but increase during others. When trying to understand these seemingly contradictory results, I observed that blink reduction occurs when one engages with an external input. For instance, a decrease has been observed due to the onset of a stimulus, sensory input processing and attention towards sensory input. However, for activities that do not involve such an engagement, e.g. imagination, daydreaming or creativity, the blink rate has been shown to increase. To follow up on the proposed hypothesis, I distinguished tasks that involve the processing of an external stimulus and tasks that involve disengagement. In the first part of the project, I explored blinking during stimulus engagement. If the probability of blinking is low when engaging with the stimulus, then one should find a reduction in blinks specifically during the time period of processing but not during sensory input per se. To this end, in study 1, I tested the influence of task-relevant information duration on blink timing and additionally manipulated the overall sensory input using a visual and an auditory temporal simultaneity judgement task. The results showed that blinks were suppressed longer for longer periods of relevant information or in other words, blinks occurred at the end of relevant information processing for both the visual and the auditory modality. Since relevance is mediated through top-down processes, I argue that the reduction in blinks is a top-down driven suppression. In studies 2 and 3, I again investigated stimulus processing, but in this case, processing was triggered internally and not based on specific changes in the external input. To this end, I used bistable stimuli, in which the actual physical stimulus remains constant but their perception switches between different interpretations. Studies on the involvement of attention in such bistable perceptual changes indicate that the sensory input is reprocessed before the perceptual switch. The results revealed a reduction in eye blink rates before the report of perceptual switches. Importantly, I was able to decipher that the decrease was not caused by the perceptual switch or the behavioral response but likely started before the internal switch. Additionally, periods between a blink and a switch were longer than interblink intervals, indicating that blinks were followed by a period of stable percept. To conclude, the first part of the project revealed that there is a top-down driven blink suppression during the processing of an external stimulus. In the second part of the project, I extended the idea of blinks marking the disengagement from external processing and tested if blinking is associated with better performance during internally directed processes. Specifically, I investigated divergent thinking, an aspect of creativity, and the link between performance and blink rates as well as the effect of motor restriction. While I could show that motor restriction was the main factor influencing divergent thinking, the relationship between eye blink rates and creative output also depended on restriction. Results showed that higher blink rates were associated with better performance during free movement, but only between subjects. In other words, subjects who had overall higher blink rates scored better in the task, but when they were allowed to sit or walk freely. Within a single subject, trial with higher blink rates were not associated with better performance. Therefore, possibly, people who are able to disengage easily, as indicated by an overall high blink rate, perform better in divergent thinking tasks. However, the link between blink rate and internal tasks is not clear at this point. Indeed, a more complex measurement of blink behavior might be necessary to understand the relationship. In the final part of the project, I aimed to further understand the function of blinks through their neural correlates. I extracted the blink-related neural activity in the primary visual cortex (V1) of existing recordings of three rhesus monkeys during different sensory processing states. I analyzed spike related multi-unit responses, frequency dependent power changes, local field potentials and laminar distribution of activity while the animal watched a movie compared to when it was shown a blank screen. The results showed a difference in blink-related neural activity dependent on the processing state. This difference suggests a state dependent function of blinks. Taken altogether, the work presented in this thesis suggests that eye blinks have an important function during cognitive and perceptual processes. Blinks seem to facilitate a disengagement from the external world and are therefore suppressed during intended processing of external stimuli.}, subject = {Lidschlag}, language = {en} }