@article{SitterSchlesingerReinholdetal.2022, author = {Sitter, Magdalena and Schlesinger, Tobias and Reinhold, Ann-Kristin and Scholler, Axel and Heymann, Christian von and Welfle, Sabine and Bartmann, Catharina and W{\"o}ckel, Achim and Kleinschmidt, Stefan and Schneider, Sven and Gottschalk, Andr{\´e} and Greve, Susanne and Wermelt, Julius Z. and Wiener, Roland and Schulz, Frank and Chappell, Daniel and Brunner, Maya and Neumann, Claudia and Meybohm, Patrick and Kranke, Peter}, title = {COVID-19 in der geburtshilflichen An{\"a}sthesie: Prospektive Erfassung von SARS-CoV-2-Infektionen zum Zeitpunkt der Geburt sowie des peripartalen Verlaufs SARS-CoV-2-positiver Schwangerer}, series = {Der Anaesthesist}, volume = {71}, journal = {Der Anaesthesist}, number = {6}, issn = {1432-055X}, doi = {10.1007/s00101-021-01068-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264878}, pages = {452-461}, year = {2022}, abstract = {Hintergrund Im Rahmen der Pandemie des SARS-CoV-2-Virus erlangte das Patientenkollektiv der Schwangeren fr{\"u}h Aufmerksamkeit. Initial wurde angesichts sich fr{\"u}h abzeichnender Krankheitsf{\"a}lle bei j{\"u}ngeren Patienten mit einem erheblichen Aufkommen peripartal zu betreuender, COVID-19-positiver Schwangerer gerechnet. Ziel der Arbeit Diese Arbeit vermittelt einen Einblick in die SARS-CoV-2-Infektionszahlen im Rahmen der geburtshilflichen An{\"a}sthesie zu Beginn der Pandemie sowie w{\"a}hrend der zweiten Infektionswelle in Deutschland. Methoden {\"U}ber das COALA-Register (COVID-19 related Obstetric Anaesthesia Longitudinal Assessment-Registry) wurden sowohl von M{\"a}rz bis Mai 2020 als auch von Oktober 2020 bis Februar 2021 in Deutschland und der Schweiz w{\"o}chentlich prospektiv Daten zu Verdachts- und best{\"a}tigten SARS-CoV-2-F{\"a}llen bei Schwangeren zum Zeitpunkt der Geburt erhoben. Betrachtet wurden die Verteilung dieser auf die Anzahl der Geburten, Zentren und Erhebungswochen sowie m{\"u}tterliche Charakteristika und Krankheitsverl{\"a}ufe. Ergebnisse Neun Zentren haben im Verlauf 44 SARS-CoV-2-positive Schwangere zum Zeitpunkt der Geburt bei 7167 Geburten (0,6 \%) gemeldet (3 F{\"a}lle auf 2270 Geburten (0,4 \%) und 41 F{\"a}lle auf 4897 Geburten (0,8 \%)). Berichtet wurden 2 schwere COVID-19-Verl{\"a}ufe (n = 1 mit Todesfolge nach ECMO, n = 1 mit ECMO {\"u}berlebt). Bei 28 (68 \%) Patientinnen verlief die Infektion asymptomatisch. Ein Neugeborenes wurde im Verlauf positiv auf SARS-CoV‑2 getestet. Schlussfolgerung Mithilfe des Registers konnte das Auftreten von F{\"a}llen zu Beginn der Pandemie zeitnah eingesch{\"a}tzt werden. Es traten sporadisch Verdachtsf{\"a}lle bzw. best{\"a}tigte F{\"a}lle auf. Aufgrund fehlender fl{\"a}chendeckender Testung muss aber von einer Dunkelziffer asymptomatischer F{\"a}lle ausgegangen werden. W{\"a}hrend der zweiten Infektionswelle wurden 68 \% asymptomatische F{\"a}lle gemeldet. Jedoch kann es bei jungen, gesunden Patientinnen ohne das Vorliegen typischer Risikofaktoren zu schwerwiegenden Verl{\"a}ufen kommen.}, language = {de} } @article{JahnkeGiesAssmannetal.2016, author = {Jahnke, Frank and Gies, Christopher and Aßmann, Marc and Bayer, Manfred and Leymann, H.A.M. and Foerster, Alexander and Wiersig, Jan and Schneider, Christian and Kamp, Martin and H{\"o}fling, Sven}, title = {Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, number = {11540}, doi = {10.1038/ncomms11540}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166144}, year = {2016}, abstract = {Light is often characterized only by its classical properties, like intensity or coherence. When looking at its quantum properties, described by photon correlations, new information about the state of the matter generating the radiation can be revealed. In particular the difference between independent and entangled emitters, which is at the heart of quantum mechanics, can be made visible in the photon statistics of the emitted light. The well-studied phenomenon of superradiance occurs when quantum-mechanical correlations between the emitters are present. Notwithstanding, superradiance was previously demonstrated only in terms of classical light properties. Here, we provide the missing link between quantum correlations of the active material and photon correlations in the emitted radiation. We use the superradiance of quantum dots in a cavity-quantum electrodynamics laser to show a direct connection between superradiant pulse emission and distinctive changes in the photon correlation function. This directly demonstrates the importance of quantum-mechanical correlations and their transfer between carriers and photons in novel optoelectronic devices.}, language = {en} } @article{HeIffLundtetal.2016, author = {He, Yu-Ming and Iff, Oliver and Lundt, Nils and Baumann, Vasilij and Davanco, Marcelo and Srinivasan, Kartik and H{\"o}fling, Sven and Schneider, Christian}, title = {Cascaded emission of single photons from the biexciton in monolayered WSe\(_{2}\)}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms13409}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169363}, year = {2016}, abstract = {Monolayers of transition metal dichalcogenide materials emerged as a new material class to study excitonic effects in solid state, as they benefit from enormous Coulomb correlations between electrons and holes. Especially in WSe\(_{2}\), sharp emission features have been observed at cryogenic temperatures, which act as single photon sources. Tight exciton localization has been assumed to induce an anharmonic excitation spectrum; however, the evidence of the hypothesis, namely the demonstration of a localized biexciton, is elusive. Here we unambiguously demonstrate the existence of a localized biexciton in a monolayer of WSe\(_{2}\), which triggers an emission cascade of single photons. The biexciton is identified by its time-resolved photoluminescence, superlinearity and distinct polarization in micro-photoluminescence experiments. We evidence the cascaded nature of the emission process in a cross-correlation experiment, which yields a strong bunching behaviour. Our work paves the way to a new generation of quantum optics experiments with two-dimensional semiconductors.}, language = {en} } @article{KochereshkoDurnevBesombesetal.2016, author = {Kochereshko, Vladimir P. and Durnev, Mikhail V. and Besombes, Lucien and Mariette, Henri and Sapega, Victor F. and Askitopoulos, Alexis and Savenko, Ivan G. and Liew, Timothy C. H. and Shelykh, Ivan A. and Platonov, Alexey V. and Tsintzos, Simeon I. and Hatzopoulos, Z. and Savvidis, Pavlos G. and Kalevich, Vladimir K. and Afanasiev, Mikhail M. and Lukoshkin, Vladimir A. and Schneider, Christian and Amthor, Matthias and Metzger, Christian and Kamp, Martin and Hoefling, Sven and Lagoudakis, Pavlos and Kavokin, Alexey}, title = {Lasing in Bose-Fermi mixtures}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {20091}, doi = {10.1038/srep20091}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168152}, year = {2016}, abstract = {Light amplification by stimulated emission of radiation, well-known for revolutionising photonic science, has been realised primarily in fermionic systems including widely applied diode lasers. The prerequisite for fermionic lasing is the inversion of electronic population, which governs the lasing threshold. More recently, bosonic lasers have also been developed based on Bose-Einstein condensates of exciton-polaritons in semiconductor microcavities. These electrically neutral bosons coexist with charged electrons and holes. In the presence of magnetic fields, the charged particles are bound to their cyclotron orbits, while the neutral exciton-polaritons move freely. We demonstrate how magnetic fields affect dramatically the phase diagram of mixed Bose-Fermi systems, switching between fermionic lasing, incoherent emission and bosonic lasing regimes in planar and pillar microcavities with optical and electrical pumping. We collected and analyzed the data taken on pillar and planar microcavity structures at continuous wave and pulsed optical excitation as well as injecting electrons and holes electronically. Our results evidence the transition from a Bose gas to a Fermi liquid mediated by magnetic fields and light-matter coupling.}, language = {en} } @article{HolzingerSchneiderHoeflingetal.2019, author = {Holzinger, Steffen and Schneider, Christian and H{\"o}fling, Sven and Porte, Xavier and Reitzenstein, Stephan}, title = {Quantum-dot micropillar lasers subject to coherent time-delayed optical feedback from a short external cavity}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-018-36599-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322485}, year = {2019}, abstract = {We investigate the mode-switching dynamics of an electrically driven bimodal quantum-dot micropillar laser when subject to delayed coherent optical feedback from a short external cavity. We experimentally characterize how the external cavity length, being on the same order than the microlaser's coherence length, influences the spectral and dynamical properties of the micropillar laser. Moreover, we determine the relaxation oscillation frequency of the micropillar by superimposing optical pulse injection to a dc current. It is found that the optical pulse can be used to disturb the feedback-coupled laser within one roundtrip time in such a way that it reaches the same output power as if no feedback was present. Our results do not only expand the understanding of microlasers when subject to optical feedback from short external cavities, but pave the way towards tailoring the properties of this key nanophotonic system for studies in the quantum regime of self-feedback and its implementation to integrated photonic circuits.}, language = {en} } @article{KreinbergPorteSchickeetal.2019, author = {Kreinberg, S{\"o}ren and Porte, Xavier and Schicke, David and Lingnau, Benjamin and Schneider, Christian and H{\"o}fling, Sven and Kanter, Ido and L{\"u}dge, Kathy and Reitzenstein, Stephan}, title = {Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at ultra-low light levels}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-09559-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229811}, year = {2019}, abstract = {Synchronization of coupled oscillators at the transition between classical physics and quantum physics has become an emerging research topic at the crossroads of nonlinear dynamics and nanophotonics. We study this unexplored field by using quantum dot microlasers as optical oscillators. Operating in the regime of cavity quantum electrodynamics (cQED) with an intracavity photon number on the order of 10 and output powers in the 100 nW range, these devices have high β-factors associated with enhanced spontaneous emission noise. We identify synchronization of mutually coupled microlasers via frequency locking associated with a sub-gigahertz locking range. A theoretical analysis of the coupling behavior reveals striking differences from optical synchronization in the classical domain with negligible spontaneous emission noise. Beyond that, additional self-feedback leads to zero-lag synchronization of coupled microlasers at ultra-low light levels. Our work has high potential to pave the way for future experiments in the quantum regime of synchronization.}, language = {en} } @article{SchneiderGlazovKornetal.2018, author = {Schneider, Christian and Glazov, Mikhail M. and Korn, Tobias and H{\"o}fling, Sven and Urbaszek, Bernhard}, title = {Two-dimensional semiconductors in the regime of strong light-matter coupling}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-04866-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231295}, year = {2018}, abstract = {The optical properties of transition metal dichalcogenide monolayers are widely dominated by excitons, Coulomb-bound electron-hole pairs. These quasi-particles exhibit giant oscillator strength and give rise to narrow-band, well-pronounced optical transitions, which can be brought into resonance with electromagnetic fields in microcavities and plasmonic nanostructures. Due to the atomic thinness and robustness of the monolayers, their integration in van der Waals heterostructures provides unique opportunities for engineering strong light-matter coupling. We review first results in this emerging field and outline future opportunities and challenges.}, language = {en} } @article{KreinbergGrbešićStraussetal.2018, author = {Kreinberg, S{\"o}ren and Grbešić, Tomislav and Strauß, Max and Carmele, Alexander and Emmerling, Monika and Schneider, Christian and H{\"o}fling, Sven and Porte, Xavier and Reitzenstein, Stephan}, title = {Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source}, series = {Light: Science \& Applications}, volume = {7}, journal = {Light: Science \& Applications}, doi = {10.1038/s41377-018-0045-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229802}, year = {2018}, abstract = {Two-level emitters are the main building blocks of photonic quantum technologies and are model systems for the exploration of quantum optics in the solid state. Most interesting is the strict resonant excitation of such emitters to control their occupation coherently and to generate close to ideal quantum light, which is of utmost importance for applications in photonic quantum technology. To date, the approaches and experiments in this field have been performed exclusively using bulky lasers, which hinders the application of resonantly driven two-level emitters in compact photonic quantum systems. Here we address this issue and present a concept for a compact resonantly driven single-photon source by performing quantum-optical spectroscopy of a two-level system using a compact high-β microlaser as the excitation source. The two-level system is based on a semiconductor quantum dot (QD), which is excited resonantly by a fiber-coupled electrically driven micropillar laser. We dress the excitonic state of the QD under continuous wave excitation, and trigger the emission of single photons with strong multi-photon suppression (g\(^{(2)}\)(0)=0.02) and high photon indistinguishability (V = 57±9\%) via pulsed resonant excitation at 156 MHz. These results clearly demonstrate the high potential of our resonant excitation scheme, which can pave the way for compact electrically driven quantum light sources with excellent quantum properties to enable the implementation of advanced quantum communication protocols.}, language = {en} } @article{WaldherrLundtKlaasetal.2018, author = {Waldherr, Max and Lundt, Nils and Klaas, Martin and Betzold, Simon and Wurdack, Matthias and Baumann, Vasilij and Estrecho, Eliezer and Nalitov, Anton and Cherotchenko, Evgenia and Cai, Hui and Ostrovskaya, Elena A. and Kavokin, Alexey V. and Tongay, Sefaattin and Klembt, Sebastian and H{\"o}fling, Sven and Schneider, Christian}, title = {Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-05532-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233280}, year = {2018}, abstract = {Bosonic condensation belongs to the most intriguing phenomena in physics, and was mostly reserved for experiments with ultra-cold quantum gases. More recently, it became accessible in exciton-based solid-state systems at elevated temperatures. Here, we demonstrate bosonic condensation driven by excitons hosted in an atomically thin layer of MoSe2, strongly coupled to light in a solid-state resonator. The structure is operated in the regime of collective strong coupling between a Tamm-plasmon resonance, GaAs quantum well excitons, and two-dimensional excitons confined in the monolayer crystal. Polariton condensation in a monolayer crystal manifests by a superlinear increase of emission intensity from the hybrid polariton mode, its density-dependent blueshift, and a dramatic collapse of the emission linewidth, a hallmark of temporal coherence. Importantly, we observe a significant spin-polarization in the injected polariton condensate, a fingerprint for spin-valley locking in monolayer excitons. Our results pave the way towards highly nonlinear, coherent valleytronic devices and light sources.}, language = {en} }