@phdthesis{Yang2021, author = {Yang, Tao}, title = {Functional insights into the role of a bacterial virulence factor and a host factor in Neisseria gonorrhoeae infection}, doi = {10.25972/OPUS-20895}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208959}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Neisseria gonorrhoeae (GC) is a human specific pathogenic bacterium. Currently, N. gonorrhoeae developed resistance to virtually all the available antibiotics used for treatment. N. gonorrhoeae starts infection by colonizing the cell surface, followed by invasion of the host cell, intracellular persistence, transcytosis and exit into the subepithelial space. Subepithelial bacteria can reach the bloodstream and disseminate to other tissues causing systemic infections, which leads to serious conditions such as arthritis and pneumonia. A number of studies have well established the host-pathogen interactions during the initial adherence and invasion steps. However, the mechanism of intracellular survival and traversal is poorly understood so far. Hence, identification of novel bacterial virulence factors and host factors involved in the host-pathogen interaction is a crucial step in understanding disease development and uncovering novel therapeutic approaches. Besides, most of the previous studies about N. gonorrhoeae were performed in the conventional cell culture. Although they have provided insights into host-pathogen interactions, much information about the native infection microenvironment, such as cell polarization and barrier function, is still missing. This work focused on determining the function of novel bacterial virulence factor NGFG_01605 and host factor (FLCN) in gonococcal infection. NGFG_01605 was identified by Tn5 transposon library screening. It is a putative U32 protease. Unlike other proteins in this family, it is not secreted and has no ex vivo protease activity. NGFG_01605 knockout decreases gonococcal survival in the epithelial cell. 3D models based on T84 cell was developed for the bacterial transmigration assay. NGFG_01605 knockout does not affect gonococcal transmigration. The novel host factor FLCN was identified by shRNA library screening in search for factors that affected gonococcal adherence and/or internalization. We discovered that FLCN did not affect N. gonorrhoeae adherence and invasion but was essential for bacterial survival. Since programmed cell death is a host defence mechanism against intracellular pathogens, we further explored apoptosis and autophagy upon gonococcal infection and determined that FLCN did not affect apoptosis but inhibited autophagy. Moreover, we found that FLCN inhibited the expression of E-cadherin. Knockdown of E- cadherin decreased the autophagy flux and supported N. gonorrhoeae survival. Both non-polarized and polarized cells are present in the cervix, and additionally, E-cadherin represents different polarization properties on these different cells. Therefore, we established 3-D models to better understand the functions of FLCN. We discovered that FLCN was critical for N. gonorrhoeae survival in the 3-D environment as well, but not through inhibiting autophagy. Furthermore, FLCN inhibits the E-cadherin expression and disturbs its polarization in the 3-D models. Since N. gonorrhoeae can cross the epithelial cell barriers through both cell-cell junctions and transcellular migration, we further explored the roles FLCN and E-cadherin played in transmigration. FLCN delayed N. gonorrhoeae transmigration, whereas the knockdown of E-cadherin increased N. gonorrhoeae transmigration. In summary, we revealed roles of the NGFG_01605 and FLCN-E-cadherin axis play in N. gonorrhoeae infection, particularly in relation to intracellular survival and transmigration. This is also the first study that connects FLCN and human-specific pathogen infection.}, language = {en} } @article{HeydarianYangSchweinlinetal.2019, author = {Heydarian, Motaharehsadat and Yang, Tao and Schweinlin, Matthias and Steinke, Maria and Walles, Heike and Rudel, Thomas and Kozjak-Pavlovic, Vera}, title = {Biomimetic human tissue model for long-term study of Neisseria gonorrhoeae infection}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, number = {1740}, issn = {1664-302X}, doi = {10.3389/fmicb.2019.01740}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197912}, year = {2019}, abstract = {Gonorrhea is the second most common sexually transmitted infection in the world and is caused by Gram-negative diplococcus Neisseria gonorrhoeae. Since N. gonorrhoeae is a human-specific pathogen, animal infection models are only of limited use. Therefore, a suitable in vitro cell culture model for studying the complete infection including adhesion, transmigration and transport to deeper tissue layers is required. In the present study, we generated three independent 3D tissue models based on porcine small intestinal submucosa (SIS) scaffold by co-culturing human dermal fibroblasts with human colorectal carcinoma, endometrial epithelial, and male uroepithelial cells. Functional analyses such as transepithelial electrical resistance (TEER) and FITC-dextran assay indicated the high barrier integrity of the created monolayer. The histological, immunohistochemical, and ultra-structural analyses showed that the 3D SIS scaffold-based models closely mimic the main characteristics of the site of gonococcal infection in human host including the epithelial monolayer, the underlying connective tissue, mucus production, tight junction, and microvilli formation. We infected the established 3D tissue models with different N. gonorrhoeae strains and derivatives presenting various phenotypes regarding adhesion and invasion. The results indicated that the disruption of tight junctions and increase in interleukin production in response to the infection is strain and cell type-dependent. In addition, the models supported bacterial survival and proved to be better suitable for studying infection over the course of several days in comparison to commonly used Transwell® models. This was primarily due to increased resilience of the SIS scaffold models to infection in terms of changes in permeability, cell destruction and bacterial transmigration. In summary, the SIS scaffold-based 3D tissue models of human mucosal tissues represent promising tools for investigating N. gonorrhoeae infections under close-to-natural conditions.}, language = {en} } @article{MaCalvoWangetal.2015, author = {Ma, Eric Yue and Calvo, M. Reyes and Wang, Jing and Lian, Biao and M{\"u}hlbauer, Mathias and Br{\"u}ne, Christoph and Cui, Yong-Tao and Lai, Keji and Kundhikanjana, Worasom and Yang, Yongliang and Baenninger, Matthias and K{\"o}nig, Markus and Ames, Christopher and Buhmann, Hartmut and Leubner, Philipp and Molenkamp, Laurens W. and Zhang, Shou-Cheng and Goldhaber-Gordon, David and Kelly, Michael A. and Shen, Zhi-Xun}, title = {Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {7252}, doi = {10.1038/ncomms8252}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143185}, year = {2015}, abstract = {The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy, and compare our findings to a noninverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. This indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.}, language = {en} } @article{YangHeydarianKozjakPavlovicetal.2020, author = {Yang, Tao and Heydarian, Motaharehsadat and Kozjak-Pavlovic, Vera and Urban, Manuela and Harbottle, Richard P. and Rudel, Thomas}, title = {Folliculin Controls the Intracellular Survival and Trans-Epithelial Passage of Neisseria gonorrhoeae}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {10}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {422}, issn = {2235-2988}, doi = {10.3389/fcimb.2020.00422}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211372}, year = {2020}, abstract = {Neisseria gonorrhoeae, a Gram-negative obligate human pathogenic bacterium, infects human epithelial cells and causes sexually transmitted diseases. Emerging multi-antibiotic resistant gonococci and increasing numbers of infections complicate the treatment of infected patients. Here, we used an shRNA library screen and next-generation sequencing to identify factors involved in epithelial cell infection. Folliculin (FLCN), a 64 kDa protein with a tumor repressor function was identified as a novel host factor important for N. gonorrhoeae survival after uptake. We further determined that FLCN did not affect N. gonorrhoeae adherence and invasion but was essential for its survival in the cells by modulating autophagy. In addition, FLCN was also required to maintain cell to cell contacts in the epithelial layer. In an infection model with polarized cells, FLCN inhibited the polarized localization of E-cadherin and the transcytosis of gonococci across polarized epithelial cells. In conclusion, we demonstrate here the connection between FLCN and bacterial infection and in particular the role of FLCN in the intracellular survival and transcytosis of gonococci across polarized epithelial cell layers.}, language = {en} }