@article{ChopraBiehlSteinfattetal.2016, author = {Chopra, Martin and Biehl, Marlene and Steinfatt, Tim and Brandl, Andreas and Kums, Juliane and Amich, Jorge and Vaeth, Martin and Kuen, Janina and Holtappels, Rafaela and Podlech, J{\"u}rgen and Mottok, Anja and Kraus, Sabrina and Jord{\´a}n-Garotte, Ana-Laura and B{\"a}uerlein, Carina A. and Brede, Christian and Ribechini, Eliana and Fick, Andrea and Seher, Axel and Polz, Johannes and Ottmueller, Katja J. and Baker, Jeannette and Nishikii, Hidekazu and Ritz, Miriam and Mattenheimer, Katharina and Schwinn, Stefanie and Winter, Thorsten and Sch{\"a}fer, Viktoria and Krappmann, Sven and Einsele, Hermann and M{\"u}ller, Thomas D. and Reddehase, Matthias J. and Lutz, Manfred B. and M{\"a}nnel, Daniela N. and Berberich-Siebelt, Friederike and Wajant, Harald and Beilhack, Andreas}, title = {Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion}, series = {Journal of Experimental Medicine}, volume = {213}, journal = {Journal of Experimental Medicine}, number = {9}, doi = {10.1084/jem.20151563}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187640}, pages = {1881-1900}, year = {2016}, abstract = {Donor CD4\(^+\)Foxp3\(^+\) regulatory T cells (T reg cells) suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HCT allo-HCT]). Current clinical study protocols rely on the ex vivo expansion of donor T reg cells and their infusion in high numbers. In this study, we present a novel strategy for inhibiting GvHD that is based on the in vivo expansion of recipient T reg cells before allo-HCT, exploiting the crucial role of tumor necrosis factor receptor 2 (TNFR2) in T reg cell biology. Expanding radiation-resistant host T reg cells in recipient mice using a mouse TNFR2-selective agonist before allo-HCT significantly prolonged survival and reduced GvHD severity in a TNFR2-and T reg cell-dependent manner. The beneficial effects of transplanted T cells against leukemia cells and infectious pathogens remained unaffected. A corresponding human TNFR2-specific agonist expanded human T reg cells in vitro. These observations indicate the potential of our strategy to protect allo-HCT patients from acute GvHD by expanding T reg cells via selective TNFR2 activation in vivo.}, language = {en} } @article{StrunzVuilleDitBilleFoxetal.2022, author = {Strunz, Patrick-Pascal and Vuille-Dit-Bille, Raphael N. and Fox, Mark R. and Geier, Andreas and Maggiorini, Marco and Gassmann, Max and Fruehauf, Heiko and Lutz, Thomas A. and Goetze, Oliver}, title = {Effect of high altitude on human postprandial \(^{13}\)C-octanoate metabolism, intermediary metabolites, gastrointestinal peptides, and visceral perception}, series = {Neurogastroenterology and Motility}, volume = {34}, journal = {Neurogastroenterology and Motility}, number = {3}, doi = {10.1111/nmo.14225}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259611}, year = {2022}, abstract = {Objective At high altitude (HA), acute mountain sickness (AMS) is accompanied by neurologic and upper gastrointestinal symptoms (UGS). The primary aim of this study was to test the hypothesis that delayed gastric emptying (GE), assessed by \(^{13}\)C-octanoate breath testing (OBT), causes UGS in AMS. The secondary aim was to assess post-gastric mechanisms of OBT, which could confound results under these conditions, by determination of intermediary metabolites, gastrointestinal peptides, and basal metabolic rate. Methods A prospective trial was performed in 25 healthy participants (15 male) at 4559 m (HA) and at 490 m (Zurich). GE was assessed by OBT (428 kcal solid meal) and UGS by visual analogue scales (VAS). Blood sampling of metabolites (glucose, free fatty acids (FFA), triglycerides (TG), beta-hydroxyl butyrate (BHB), L-lactate) and gastrointestinal peptides (insulin, amylin, PYY, etc.) was performed as well as blood gas analysis and spirometry. Statistical analysis: variance analyses, bivariate correlation, and multilinear regression analysis. Results After 24 h under hypoxic conditions at HA, participants developed AMS (p < 0.001). \(^{13}\)CO\(_{2}\) exhalation kinetics increased (p < 0.05) resulting in reduced estimates of gastric half-emptying times (p < 0.01). However, median resting respiratory quotients and plasma profiles of TG indicated that augmented beta-oxidation was the main predictor of accelerated \(^{13}\)CO\(_{2}\)-generation under these conditions. Conclusion Quantification of \(^{13}\)C-octanoate oxidation by a breath test is sensitive to variation in metabolic (liver) function under hypoxic conditions. \(^{13}\)C-breath testing using short-chain fatty acids is not reliable for measurement of gastric function at HA and should be considered critically in other severe hypoxic conditions, like sepsis or chronic lung disease.}, language = {en} }