@article{SubbarayalKarunakaranWinkleretal.2015, author = {Subbarayal, Prema and Karunakaran, Karthika and Winkler, Ann-Cathrin and Rother, Marion and Gonzalez, Erik and Meyer, Thomas F. and Rudel, Thomas}, title = {EphrinA2 Receptor (EphA2) Is an Invasion and Intracellular Signaling Receptor for Chlamydia trachomatis}, series = {PLoS Pathogens}, volume = {11}, journal = {PLoS Pathogens}, number = {4}, doi = {10.1371/journal.ppat.1004846}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125566}, pages = {e1004846}, year = {2015}, abstract = {The obligate intracellular bacterium Chlamydia trachomatis invades into host cells to replicate inside a membrane-bound vacuole called inclusion. Multiple different host proteins are recruited to the inclusion and are functionally modulated to support chlamydial development. Invaded and replicating Chlamydia induces a long-lasting activation of the PI3 kinase signaling pathway that is required for efficient replication. We identified the cell surface tyrosine kinase EphrinA2 receptor (EphA2) as a chlamydial adherence and invasion receptor that induces PI3 kinase (PI3K) activation, promoting chlamydial replication. Interfering with binding of C. trachomatis serovar L2 (Ctr) to EphA2, downregulation of EphA2 expression or inhibition of EphA2 activity significantly reduced Ctr infection. Ctr interacts with and activates EphA2 on the cell surface resulting in Ctr and receptor internalization. During chlamydial replication, EphA2 remains active accumulating around the inclusion and interacts with the p85 regulatory subunit of PI3K to support the activation of the PI3K/Akt signaling pathway that is required for normal chlamydial development. Overexpression of full length EphA2, but not the mutant form lacking the intracellular cytoplasmic domain, enhanced PI3K activation and Ctr infection. Despite the depletion of EphA2 from the cell surface, Ctr infection induces upregulation of EphA2 through the activation of the ERK pathway, which keeps the infected cell in an apoptosis-resistant state. The significance of EphA2 as an entry and intracellular signaling receptor was also observed with the urogenital C. trachomatis-serovar D. Our findings provide the first evidence for a host cell surface receptor that is exploited for invasion as well as for receptor-mediated intracellular signaling to facilitate chlamydial replication. In addition, the engagement of a cell surface receptor at the inclusion membrane is a new mechanism by which Chlamydia subverts the host cell and induces apoptosis resistance.}, language = {en} } @article{RudelFaulstichBoettcheretal.2013, author = {Rudel, Thomas and Faulstich, Michaela and B{\"o}ttcher, Jan-Peter and Meyer, Thomas F. and Fraunholz, Martin}, title = {Pilus Phase Variation Switches Gonococcal Adherence to Invasion by Caveolin-1-Dependent Host Cell Signaling}, series = {PLoS Pathogens}, journal = {PLoS Pathogens}, doi = {10.1371/journal.ppat.1003373}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96679}, year = {2013}, abstract = {Many pathogenic bacteria cause local infections but occasionally invade into the blood stream, often with fatal outcome. Very little is known about the mechanism underlying the switch from local to invasive infection. In the case of Neisseria gonorrhoeae, phase variable type 4 pili (T4P) stabilize local infection by mediating microcolony formation and inducing anti-invasive signals. Outer membrane porin PorBIA, in contrast, is associated with disseminated infection and facilitates the efficient invasion of gonococci into host cells. Here we demonstrate that loss of pili by natural pilus phase variation is a prerequisite for the transition from local to invasive infection. Unexpectedly, both T4P-mediated inhibition of invasion and PorBIA-triggered invasion utilize membrane rafts and signaling pathways that depend on caveolin-1-Y14 phosphorylation (Cav1-pY14). We identified p85 regulatory subunit of PI3 kinase (PI3K) and phospholipase Cγ1 as new, exclusive and essential interaction partners for Cav1-pY14 in the course of PorBIA-induced invasion. Active PI3K induces the uptake of gonococci via a new invasion pathway involving protein kinase D1. Our data describe a novel route of bacterial entry into epithelial cells and offer the first mechanistic insight into the switch from local to invasive gonococcal infection.}, language = {en} } @article{HebestreitZeidlerSchippersetal.2022, author = {Hebestreit, Helge and Zeidler, Cornelia and Schippers, Christopher and de Zwaan, Martina and Deckert, J{\"u}rgen and Heuschmann, Peter and Krauth, Christian and Bullinger, Monika and Berger, Alexandra and Berneburg, Mark and Brandstetter, Lilly and Deibele, Anna and Dieris-Hirche, Jan and Graessner, Holm and G{\"u}ndel, Harald and Herpertz, Stephan and Heuft, Gereon and Lapstich, Anne-Marie and L{\"u}cke, Thomas and Maisch, Tim and Mundlos, Christine and Petermann-Meyer, Andrea and M{\"u}ller, Susanne and Ott, Stephan and Pfister, Lisa and Quitmann, Julia and Romanos, Marcel and Rutsch, Frank and Schaubert, Kristina and Schubert, Katharina and Schulz, J{\"o}rg B. and Schweiger, Susann and T{\"u}scher, Oliver and Ungeth{\"u}m, Kathrin and Wagner, Thomas O. F. and Haas, Kirsten}, title = {Dual guidance structure for evaluation of patients with unclear diagnosis in centers for rare diseases (ZSE-DUO): study protocol for a controlled multi-center cohort study}, series = {Orphanet Journal of Rare Diseases}, volume = {17}, journal = {Orphanet Journal of Rare Diseases}, number = {1}, doi = {10.1186/s13023-022-02176-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300440}, year = {2022}, abstract = {Background In individuals suffering from a rare disease the diagnostic process and the confirmation of a final diagnosis often extends over many years. Factors contributing to delayed diagnosis include health care professionals' limited knowledge of rare diseases and frequent (co-)occurrence of mental disorders that may complicate and delay the diagnostic process. The ZSE-DUO study aims to assess the benefits of a combination of a physician focusing on somatic aspects with a mental health expert working side by side as a tandem in the diagnostic process. Study design This multi-center, prospective controlled study has a two-phase cohort design. Methods Two cohorts of 682 patients each are sequentially recruited from 11 university-based German Centers for Rare Diseases (CRD): the standard care cohort (control, somatic expertise only) and the innovative care cohort (experimental, combined somatic and mental health expertise). Individuals aged 12 years and older presenting with symptoms and signs which are not explained by current diagnoses will be included. Data will be collected prior to the first visit to the CRD's outpatient clinic (T0), at the first visit (T1) and 12 months thereafter (T2). Outcomes Primary outcome is the percentage of patients with one or more confirmed diagnoses covering the symptomatic spectrum presented. Sample size is calculated to detect a 10 percent increase from 30\% in standard care to 40\% in the innovative dual expert cohort. Secondary outcomes are (a) time to diagnosis/diagnoses explaining the symptomatology; (b) proportion of patients successfully referred from CRD to standard care; (c) costs of diagnosis including incremental cost effectiveness ratios; (d) predictive value of screening instruments administered at T0 to identify patients with mental disorders; (e) patients' quality of life and evaluation of care; and f) physicians' satisfaction with the innovative care approach. Conclusions This is the first multi-center study to investigate the effects of a mental health specialist working in tandem with a somatic expert physician in CRDs. If this innovative approach proves successful, it will be made available on a larger scale nationally and promoted internationally. In the best case, ZSE-DUO can significantly shorten the time to diagnosis for a suspected rare disease.}, language = {en} } @article{KosterGurumurthyKumaretal.2022, author = {Koster, Stefanie and Gurumurthy, Rajendra Kumar and Kumar, Naveen and Prakash, Pon Ganish and Dhanraj, Jayabhuvaneshwari and Bayer, Sofia and Berger, Hilmar and Kurian, Shilpa Mary and Drabkina, Marina and Mollenkopf, Hans-Joachim and Goosmann, Christian and Brinkmann, Volker and Nagel, Zachary and Mangler, Mandy and Meyer, Thomas F. and Chumduri, Cindrilla}, title = {Modelling Chlamydia and HPV co-infection in patient-derived ectocervix organoids reveals distinct cellular reprogramming}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-022-28569-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301349}, year = {2022}, abstract = {Coinfections with pathogenic microbes continually confront cervical mucosa, yet their implications in pathogenesis remain unclear. Lack of in-vitro models recapitulating cervical epithelium has been a bottleneck to study coinfections. Using patient-derived ectocervical organoids, we systematically modeled individual and coinfection dynamics of Human papillomavirus (HPV)16 E6E7 and Chlamydia, associated with carcinogenesis. The ectocervical stem cells were genetically manipulated to introduce E6E7 oncogenes to mimic HPV16 integration. Organoids from these stem cells develop the characteristics of precancerous lesions while retaining the self-renewal capacity and organize into mature stratified epithelium similar to healthy organoids. HPV16 E6E7 interferes with Chlamydia development and induces persistence. Unique transcriptional and post-translational responses induced by Chlamydia and HPV lead to distinct reprogramming of host cell processes. Strikingly, Chlamydia impedes HPV-induced mechanisms that maintain cellular and genome integrity, including mismatch repair in the stem cells. Together, our study employing organoids demonstrates the hazard of multiple infections and the unique cellular microenvironment they create, potentially contributing to neoplastic progression.}, language = {en} }