@article{BeyersdorfWernerWolfetal.2011, author = {Beyersdorf, Niklas and Werner, Sandra and Wolf, Nelli and Herrmann, Thomas and Kerkau, Thomas}, title = {Characterization of a New Mouse Model for Peripheral T Cell Lymphoma in Humans}, series = {PLoS One}, volume = {6}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0028546}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137946}, pages = {e28546}, year = {2011}, abstract = {Peripheral T cell lymphomas (PTCLs) are associated with a poor prognosis due to often advanced disease at the time of diagnosis and due to a lack of efficient therapeutic options. Therefore, appropriate animal models of PTCL are vital to improve clinical management of this disease. Here, we describe a monoclonal CD8\(^+\) CD4\(^-\) αβ T cell receptor Vβ2\(^+\) CD28\(^+\) T cell lymphoma line, termed T8-28. T8-28 cells were isolated from an un-manipulated adult BALB/c mouse housed under standard pathogen-free conditions. T8-28 cells induced terminal malignancy upon adoptive transfer into syngeneic BALB/c mice. Despite intracellular expression of the cytotoxic T cell differentiation marker granzyme B, T8-28 cells appeared to be defective with respect to cytotoxic activity as read-out in vitro. Among the protocols tested, only addition of interleukin 2 in vitro could partially compensate for the in vivo micro-milieu in promoting growth of the T8-28 lymphoma cells.}, language = {en} } @article{GuhnDreslerAndreattaetal.2014, author = {Guhn, Anne and Dresler, Thomas and Andreatta, Marta and M{\"u}ller, Laura D. and Hahn, Tim and Tupak, Sara V. and Polak, Thomas and Deckert, J{\"u}rgen and Herrmann, Martin J.}, title = {Medial prefrontal cortex stimulation modulates the processing of conditioned fear}, doi = {10.3389/fnbeh.2014.00044}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111309}, year = {2014}, abstract = {The extinction of conditioned fear depends on an efficient interplay between the amygdala and the medial prefrontal cortex (mPFC). In rats, high-frequency electrical mPFC stimulation has been shown to improve extinction by means of a reduction of amygdala activity. However, so far it is unclear whether stimulation of homologues regions in humans might have similar beneficial effects. Healthy volunteers received one session of either active or sham repetitive transcranial magnetic stimulation (rTMS) covering the mPFC while undergoing a 2-day fear conditioning and extinction paradigm. Repetitive TMS was applied offline after fear acquisition in which one of two faces (CS+ but not CS-) was associated with an aversive scream (UCS). Immediate extinction learning (day 1) and extinction recall (day 2) were conducted without UCS delivery. Conditioned responses (CR) were assessed in a multimodal approach using fear-potentiated startle (FPS), skin conductance responses (SCR), functional near-infrared spectroscopy (fNIRS), and self-report scales. Consistent with the hypothesis of a modulated processing of conditioned fear after high-frequency rTMS, the active group showed a reduced CS+/CS- discrimination during extinction learning as evident in FPS as well as in SCR and arousal ratings. FPS responses to CS+ further showed a linear decrement throughout both extinction sessions. This study describes the first experimental approach of influencing conditioned fear by using rTMS and can thus be a basis for future studies investigating a complementation of mPFC stimulation to cognitive behavioral therapy (CBT).}, language = {en} } @article{GoebelPankratzAsaridouetal.2016, author = {G{\"o}bel, Kerstin and Pankratz, Susann and Asaridou, Chloi-Magdalini and Herrmann, Alexander M. and Bittner, Stefan and Merker, Monika and Ruck, Tobias and Glumm, Sarah and Langhauser, Friederike and Kraft, Peter and Krug, Thorsten F. and Breuer, Johanna and Herold, Martin and Gross, Catharina C. and Beckmann, Denise and Korb-Pap, Adelheid and Schuhmann, Michael K. and Kuerten, Stefanie and Mitroulis, Ioannis and Ruppert, Clemens and Nolte, Marc W. and Panousis, Con and Klotz, Luisa and Kehrel, Beate and Korn, Thomas and Langer, Harald F. and Pap, Thomas and Nieswandt, Bernhard and Wiendl, Heinz and Chavakis, Triantafyllos and Kleinschnitz, Christoph and Meuth, Sven G.}, title = {Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, number = {11626}, doi = {10.1038/ncomms11626}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165503}, year = {2016}, abstract = {Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein-kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders.}, language = {en} } @article{SchwarzmeierLeehrBoehnleinetal.2020, author = {Schwarzmeier, Hanna and Leehr, Elisabeth Johanna and B{\"o}hnlein, Joscha and Seeger, Fabian Reinhard and Roesmann, Kati and Gathmann, Bettina and Herrmann, Martin J. and Siminski, Niklas and Jungh{\"o}fer, Markus and Straube, Thomas and Grotegerd, Dominik and Dannlowski, Udo}, title = {Theranostic markers for personalized therapy of spider phobia: Methods of a bicentric external cross-validation machine learning approach}, series = {International Journal of Methods in Psychiatric Research}, volume = {29}, journal = {International Journal of Methods in Psychiatric Research}, number = {2}, doi = {10.1002/mpr.1812}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213430}, year = {2020}, abstract = {Objectives Embedded in the Collaborative Research Center "Fear, Anxiety, Anxiety Disorders" (CRC-TRR58), this bicentric clinical study aims at identifying biobehavioral markers of treatment (non-)response by applying machine learning methodology with an external cross-validation protocol. We hypothesize that a priori prediction of treatment (non-)response is possible in a second, independent sample based on multimodal markers. Methods One-session virtual reality exposure treatment (VRET) with patients with spider phobia was conducted on two sites. Clinical, neuroimaging, and genetic data were assessed at baseline, post-treatment and after 6 months. The primary and secondary outcomes defining treatment response are as follows: 30\% reduction regarding the individual score in the Spider Phobia Questionnaire and 50\% reduction regarding the individual distance in the behavioral avoidance test. Results N = 204 patients have been included (n = 100 in W{\"u}rzburg, n = 104 in M{\"u}nster). Sample characteristics for both sites are comparable. Discussion This study will offer cross-validated theranostic markers for predicting the individual success of exposure-based therapy. Findings will support clinical decision-making on personalized therapy, bridge the gap between basic and clinical research, and bring stratified therapy into reach. The study is registered at ClinicalTrials.gov (ID: NCT03208400).}, language = {en} } @article{HerrmannBeierSimonsetal.2016, author = {Herrmann, Martin J. and Beier, Jennifer S. and Simons, Bibiane and Polak, Thomas}, title = {Transcranial Direct Current Stimulation (tDCS) of the Right Inferior Frontal Gyrus Attenuates Skin Conductance Responses to Unpredictable Threat Conditions}, series = {Frontiers in Human Neuroscience}, volume = {10}, journal = {Frontiers in Human Neuroscience}, number = {352}, doi = {10.3389/fnhum.2016.00352}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146486}, year = {2016}, abstract = {Patients with panic and post-traumatic stress disorders seem to show increased psychophysiological reactions to conditions of unpredictable (U) threat, which has been discussed as a neurobiological marker of elevated levels of sustained fear in these disorders. Interestingly, a recent study found that the right inferior frontal gyrus (rIFG) is correlated to the successful regulation of sustained fear during U threat. Therefore this study aimed to examine the potential use of non-invasive brain stimulation to foster the rIFG by means of anodal transcranial direct current stimulation (tDCS) in order to reduce psychophysiological reactions to U threat. Twenty six participants were randomly assigned into an anodal and sham stimulation group in a double-blinded manner. Anodal and cathodal electrodes (7 * 5 cm) were positioned right frontal to target the rIFG. Stimulation intensity was I = 2 mA applied for 20 min during a task including U threat conditions (NPU-task). The effects of the NPU paradigm were measured by assessing the emotional startle modulation and the skin conductance response (SCR) at the outset of the different conditions. We found a significant interaction effect of condition × tDCS for the SCR (F(2,48) = 6.3, p < 0.01) without main effects of condition and tDCS. Post hoc tests revealed that the increase in SCR from neutral (N) to U condition was significantly reduced in verum compared to the sham tDCS group (t(24) = 3.84, p < 0.001). Our results emphasize the causal role of rIFG for emotional regulation and the potential use of tDCS to reduce apprehension during U threat conditions and therefore as a treatment for anxiety disorders.}, language = {en} } @article{BiehlMerzDresleretal.2016, author = {Biehl, Stefanie C. and Merz, Christian J. and Dresler, Thomas and Heupel, Julia and Reichert, Susanne and Jacob, Christian P. and Deckert, J{\"u}rgen and Herrmann, Martin J.}, title = {Increase or Decrease of fMRI Activity in Adult Attention Deficit/ Hyperactivity Disorder: Does It Depend on Task Difficulty?}, series = {International Journal of Neuropsychopharmacology}, volume = {19}, journal = {International Journal of Neuropsychopharmacology}, number = {10}, doi = {10.1093/ijnp/pyw049}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147551}, pages = {pyw049}, year = {2016}, abstract = {Background: Attention deficit/hyperactivity disorder has been shown to affect working memory, and fMRI studies in children and adolescents with attention deficit/hyperactivity disorder report hypoactivation in task-related attentional networks. However, studies with adult attention deficit/hyperactivity disorder patients addressing this issue as well as the effects of clinically valid methylphenidate treatment are scarce. This study contributes to closing this gap. Methods: Thirty-five adult patients were randomized to 6 weeks of double-blind placebo or methylphenidate treatment. Patients completed an fMRI n-back working memory task both before and after the assigned treatment, and matched healthy controls were tested and compared to the untreated patients. Results: There were no whole-brain differences between any of the groups. However, when specified regions of interest were investigated, the patient group showed enhanced BOLD responses in dorsal and ventral areas before treatment. This increase was correlated with performance across all participants and with attention deficit/hyperactivity disorder symptoms in the patient group. Furthermore, we found an effect of treatment in the right superior frontal gyrus, with methylphenidate-treated patients exhibiting increased activation, which was absent in the placebo-treated patients. Conclusions: Our results indicate distinct activation differences between untreated adult attention deficit/hyperactivity disorder patients and matched healthy controls during a working memory task. These differences might reflect compensatory efforts by the patients, who are performing at the same level as the healthy controls. We furthermore found a positive effect of methylphenidate on the activation of a frontal region of interest. These observations contribute to a more thorough understanding of adult attention deficit/hyperactivity disorder and provide impulses for the evaluation of therapy-related changes.}, language = {en} } @article{BrandlOrtlerHerrmannetal.2010, author = {Brandl, Carolin and Ortler, Sonja and Herrmann, Thomas and Cardell, Susanna and Lutz, Manfred B. and Wiendl, Heinz}, title = {B7-H1-Deficiency Enhances the Potential of Tolerogenic Dendritic Cells by Activating CD1d-Restricted Type II NKT Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68457}, year = {2010}, abstract = {Background: Dendritic cells (DC) can act tolerogenic at a semi-mature stage by induction of protective CD4+ T cell and NKT cell responses. Methodology/Principal Findings: Here we studied the role of the co-inhibitory molecule B7-H1 (PD-L1, CD274) on semimature DC that were generated from bone marrow (BM) cells of B7-H12/2 mice and applied to the model of Experimental Autoimmune Encephalomyelitis (EAE). Injections of B7-H1-deficient DC showed increased EAE protection as compared to wild type (WT)-DC. Injections of B7-H12/2 TNF-DC induced higher release of peptide-specific IL-10 and IL-13 after restimulation in vitro together with elevated serum cytokines IL-4 and IL-13 produced by NKT cells, and reduced IL-17 and IFN-c production in the CNS. Experiments in CD1d2/2 and Ja2812/2 mice as well as with type I and II NKT cell lines indicated that only type II NKT cells but not type I NKT cells (invariant NKT cells) could be stimulated by an endogenous CD1d-ligand on DC and were responsible for the increased serum cytokine production in the absence of B7-H1. Conclusions/Significance: Together, our data indicate that BM-DC express an endogenous CD1d ligand and B7-H1 to ihibit type II but not type I NKT cells. In the absence of B7-H1 on these DC their tolerogenic potential to stimulate tolerogenic CD4+ and NKT cell responses is enhanced.}, subject = {Dendritische Zelle}, language = {en} } @article{MonzonCasanovaSteinigerSchweigleetal.2010, author = {Monzon-Casanova, Elisa and Steiniger, Birte and Schweigle, Stefanie and Clemen, Holger and Zdzieblo, Daniela and Starick, Lisa and Mueller, Ingrid and Wang, Chyung-Ru and Rhost, Sara and Cardell, Susanna and Pyz, Elwira and Herrmann, Thomas}, title = {CD1d Expression in Paneth Cells and Rat Exocrine Pancreas Revealed by Novel Monoclonal Antibodies Which Differentially Affect NKT Cell Activation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68477}, year = {2010}, abstract = {Background: CD1d is a nonpolymorphic MHC class I-like molecule which presents nonpeptide ligands, e.g. glycolipids, to NKT cells. These cells are known to have multiple effects on innate and adaptive immune responses and on the development of pathological conditions. In order to analyze CD1d expression and function in the rat, the first rat CD1dspecific monoclonal antibodies (mAbs) were generated. Methodology/Principal Findings: Two mAbs, WTH-1 and WTH-2, were generated which bound equally well to cell surfaceexpressed rat and mouse CD1d. Their non-overlapping epitopes were mapped to the CD1d heavy chain. Flow cytometry and immunohistological analyses revealed a nearly identical degree and pattern of CD1d expression for hematopoieitic cells of both species. Notable is also the detection of CD1d protein in mouse and rat Paneth cells as well as the extremely high CD1d expression in acinar exocrine cells of the rat pancreas and the expression of CD4 on rat marginal zone B cells. Both mAbs blocked a-galactosylceramide recognition by primary rat and mouse NKT cells. Interestingly, the two mAbs differed in their impact on the activation of various autoreactive T cell hybridomas, including the XV19.2 hybridoma whose activation was enhanced by the WTH-1 mAb. Conclusions/Significance: The two novel monoclonal antibodies described in this study, allowed the analysis of CD1d expression and CD1d-restricted T cell responses in the rat for the first time. Moreover, they provided new insights into mechanisms of CD1d-restricted antigen recognition. While CD1d expression by hematopoietic cells of mice and rats was extremely similar, CD1d protein was detected at not yet described sites of non-lymphatic tissues such as the rat exocrine pancreas and Paneth cells. The latter is of special relevance given the recently reported defects of Paneth cells in CD1d2/2 mice, which resulted in an altered composition of the gut flora.}, subject = {Krebs }, language = {en} } @article{KleinschnitzGrundWingleretal.2010, author = {Kleinschnitz, Christoph and Grund, Henrike and Wingler, Kirstin and Armitage, Melanie E. and Jones, Emma and Mittal, Manish and Barit, David and Schwarz, Tobias and Geis, Christian and Kraft, Peter and Barthel, Konstanze and Schuhmann, Michael K. and Herrmann, Alexander M. and Meuth, Sven G. and Stoll, Guido and Meurer, Sabine and Schrewe, Anja and Becker, Lore and Gailus-Durner, Valerie and Fuchs, Helmut and Klopstock, Thomas and de Angelis, Martin Hrabe and Jandeleit-Dahm, Karin and Shah, Ajay M. and Weissmann, Norbert and Schmidt, Harald H. H. W.}, title = {Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68416}, year = {2010}, abstract = {Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90\% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox42/2) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox42/2 mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.}, subject = {Schlaganfall}, language = {en} } @article{VernerHerrmannTrocheetal.2013, author = {Verner, Martin and Herrmann, Martin J. and Troche, Stefan J. and Roebers, Claudia M. and Rammsayer, Thomas H.}, title = {Cortical oxygen consumption in mental arithmetic as a function of task difficulty: a near-infrared spectroscopy approach}, series = {Frontiers in Human Neuroscience}, volume = {7}, journal = {Frontiers in Human Neuroscience}, number = {217}, issn = {1662-5161}, doi = {10.3389/fnhum.2013.00217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122449}, year = {2013}, abstract = {The present study investigated changes in cortical oxygenation during mental arithmetic using near-infrared spectroscopy (NIRS). Twenty-nine male volunteers were examined using a 52-channel continuous wave system for analyzing activity in prefrontal areas. With the help of a probabilistic mapping method, three regions of interest (ROIs) on each hemisphere were defined: The inferior frontal gyri (IFG), the middle frontal gyri (MFG), and the superior frontal gyri (SFG). Oxygenation as an indicator of functional brain activation was compared over the three ROI and two levels of arithmetic task difficulty (simple and complex additions). In contrast to most previous studies using fMRI or NIRS, in the present study arithmetic tasks were presented verbally in analogue to many daily life situations. With respect to task difficulty, more complex addition tasks led to higher oxygenation in all defined ROI except in the left IFG compared to simple addition tasks. When compared to the channel positions covering different gyri of the temporal lobe, the observed sensitivity to task complexity was found to be restricted to the specified ROIs. As to the comparison of ROIs, the highest oxygenation was found in the IFG, while MFG and SFG showed significantly less activation compared to IFG. The present cognitive-neuroscience approach demonstrated that NIRS is a suitable and highly feasible research tool for investigating and quantifying neural effects of increasing arithmetic task difficulty.}, language = {en} }