@article{GoebelPankratzAsaridouetal.2016, author = {G{\"o}bel, Kerstin and Pankratz, Susann and Asaridou, Chloi-Magdalini and Herrmann, Alexander M. and Bittner, Stefan and Merker, Monika and Ruck, Tobias and Glumm, Sarah and Langhauser, Friederike and Kraft, Peter and Krug, Thorsten F. and Breuer, Johanna and Herold, Martin and Gross, Catharina C. and Beckmann, Denise and Korb-Pap, Adelheid and Schuhmann, Michael K. and Kuerten, Stefanie and Mitroulis, Ioannis and Ruppert, Clemens and Nolte, Marc W. and Panousis, Con and Klotz, Luisa and Kehrel, Beate and Korn, Thomas and Langer, Harald F. and Pap, Thomas and Nieswandt, Bernhard and Wiendl, Heinz and Chavakis, Triantafyllos and Kleinschnitz, Christoph and Meuth, Sven G.}, title = {Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, number = {11626}, doi = {10.1038/ncomms11626}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165503}, year = {2016}, abstract = {Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein-kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders.}, language = {en} } @article{HerrmannBeierSimonsetal.2016, author = {Herrmann, Martin J. and Beier, Jennifer S. and Simons, Bibiane and Polak, Thomas}, title = {Transcranial Direct Current Stimulation (tDCS) of the Right Inferior Frontal Gyrus Attenuates Skin Conductance Responses to Unpredictable Threat Conditions}, series = {Frontiers in Human Neuroscience}, volume = {10}, journal = {Frontiers in Human Neuroscience}, number = {352}, doi = {10.3389/fnhum.2016.00352}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146486}, year = {2016}, abstract = {Patients with panic and post-traumatic stress disorders seem to show increased psychophysiological reactions to conditions of unpredictable (U) threat, which has been discussed as a neurobiological marker of elevated levels of sustained fear in these disorders. Interestingly, a recent study found that the right inferior frontal gyrus (rIFG) is correlated to the successful regulation of sustained fear during U threat. Therefore this study aimed to examine the potential use of non-invasive brain stimulation to foster the rIFG by means of anodal transcranial direct current stimulation (tDCS) in order to reduce psychophysiological reactions to U threat. Twenty six participants were randomly assigned into an anodal and sham stimulation group in a double-blinded manner. Anodal and cathodal electrodes (7 * 5 cm) were positioned right frontal to target the rIFG. Stimulation intensity was I = 2 mA applied for 20 min during a task including U threat conditions (NPU-task). The effects of the NPU paradigm were measured by assessing the emotional startle modulation and the skin conductance response (SCR) at the outset of the different conditions. We found a significant interaction effect of condition × tDCS for the SCR (F(2,48) = 6.3, p < 0.01) without main effects of condition and tDCS. Post hoc tests revealed that the increase in SCR from neutral (N) to U condition was significantly reduced in verum compared to the sham tDCS group (t(24) = 3.84, p < 0.001). Our results emphasize the causal role of rIFG for emotional regulation and the potential use of tDCS to reduce apprehension during U threat conditions and therefore as a treatment for anxiety disorders.}, language = {en} } @article{BiehlMerzDresleretal.2016, author = {Biehl, Stefanie C. and Merz, Christian J. and Dresler, Thomas and Heupel, Julia and Reichert, Susanne and Jacob, Christian P. and Deckert, J{\"u}rgen and Herrmann, Martin J.}, title = {Increase or Decrease of fMRI Activity in Adult Attention Deficit/ Hyperactivity Disorder: Does It Depend on Task Difficulty?}, series = {International Journal of Neuropsychopharmacology}, volume = {19}, journal = {International Journal of Neuropsychopharmacology}, number = {10}, doi = {10.1093/ijnp/pyw049}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147551}, pages = {pyw049}, year = {2016}, abstract = {Background: Attention deficit/hyperactivity disorder has been shown to affect working memory, and fMRI studies in children and adolescents with attention deficit/hyperactivity disorder report hypoactivation in task-related attentional networks. However, studies with adult attention deficit/hyperactivity disorder patients addressing this issue as well as the effects of clinically valid methylphenidate treatment are scarce. This study contributes to closing this gap. Methods: Thirty-five adult patients were randomized to 6 weeks of double-blind placebo or methylphenidate treatment. Patients completed an fMRI n-back working memory task both before and after the assigned treatment, and matched healthy controls were tested and compared to the untreated patients. Results: There were no whole-brain differences between any of the groups. However, when specified regions of interest were investigated, the patient group showed enhanced BOLD responses in dorsal and ventral areas before treatment. This increase was correlated with performance across all participants and with attention deficit/hyperactivity disorder symptoms in the patient group. Furthermore, we found an effect of treatment in the right superior frontal gyrus, with methylphenidate-treated patients exhibiting increased activation, which was absent in the placebo-treated patients. Conclusions: Our results indicate distinct activation differences between untreated adult attention deficit/hyperactivity disorder patients and matched healthy controls during a working memory task. These differences might reflect compensatory efforts by the patients, who are performing at the same level as the healthy controls. We furthermore found a positive effect of methylphenidate on the activation of a frontal region of interest. These observations contribute to a more thorough understanding of adult attention deficit/hyperactivity disorder and provide impulses for the evaluation of therapy-related changes.}, language = {en} } @article{ColvillBoothNilletal.2016, author = {Colvill, Emma and Booth, Jeremy and Nill, Simeon and Fast, Martin and Bedford, James and Oelfke, Uwe and Nakamura, Mitsuhiro and Poulsen, Per and Worm, Esben and Hansen, Rune and Ravkilde, Thomas and Rydh{\"o}g, Jonas Scherman and Pommer, Tobias and af Rosenschold, Per Munck and Lang, Stephanie and Guckenberger, Matthias and Groh, Christian and Herrmann, Christian and Verellen, Dirk and Poels, Kenneth and Wang, Lei and Hadsell, Michael and Sothmann, Thilo and Blanck, Oliver and Keall, Paul}, title = {A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: a multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking}, series = {Radiotherapy and Oncology}, volume = {119}, journal = {Radiotherapy and Oncology}, number = {1}, doi = {10.1016/j.radonc.2016.03.006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189605}, pages = {159-165}, year = {2016}, abstract = {Purpose: A study of real-time adaptive radiotherapy systems was performed to test the hypothesis that, across delivery systems and institutions, the dosimetric accuracy is improved with adaptive treatments over non-adaptive radiotherapy in the presence of patient-measured tumor motion. Methods and materials: Ten institutions with robotic(2), gimbaled(2), MLC(4) or couch tracking(2) used common materials including CT and structure sets, motion traces and planning protocols to create a lung and a prostate plan. For each motion trace, the plan was delivered twice to a moving dosimeter; with and without real-time adaptation. Each measurement was compared to a static measurement and the percentage of failed points for gamma-tests recorded. Results: For all lung traces all measurement sets show improved dose accuracy with a mean 2\%/2 mm gamma-fail rate of 1.6\% with adaptation and 15.2\% without adaptation (p < 0.001). For all prostate the mean 2\%/2 mm gamma-fail rate was 1.4\% with adaptation and 17.3\% without adaptation (p < 0.001). The difference between the four systems was small with an average 2\%/2 mm gamma-fail rate of <3\% for all systems with adaptation for lung and prostate. Conclusions: The investigated systems all accounted for realistic tumor motion accurately and performed to a similar high standard, with real-time adaptation significantly outperforming non-adaptive delivery methods.}, language = {en} } @article{LapaLueckerathKleinleinetal.2016, author = {Lapa, Constantin and L{\"u}ckerath, Katharina and Kleinlein, Irene and Monoranu, Camelia Maria and Linsenmann, Thomas and Kessler, Almuth F. and Rudelius, Martina and Kropf, Saskia and Buck, Andreas K. and Ernestus, Ralf-Ingo and Wester, Hans-J{\"u}rgen and L{\"o}hr, Mario and Herrmann, Ken}, title = {\(^{68}\)Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma}, series = {Theranostics}, volume = {6}, journal = {Theranostics}, number = {3}, doi = {10.7150/thno.13986}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168174}, pages = {428-434}, year = {2016}, abstract = {Chemokine receptor-4 (CXCR4) has been reported to be overexpressed in glioblastoma (GBM) and to be associated with poor survival. This study investigated the feasibility of non-invasive CXCR4-directed imaging with positron emission tomography/computed tomography (PET/CT) using the radiolabelled chemokine receptor ligand \(^{68}\)Ga-Pentixafor. 15 patients with clinical suspicion on primary or recurrent glioblastoma (13 primary, 2 recurrent tumors) underwent \(^{68}\)Ga-Pentixafor-PET/CT for assessment of CXCR4 expression prior to surgery. O-(2-\(^{18}\)F-fluoroethyl)-L-tyrosine (\(^{18}\)F-FET) PET/CT images were available in 11/15 cases and were compared visually and semi-quantitatively (SUV\(_{max}\), SUV\(_{mean}\)). Tumor-to-background ratios (TBR) were calculated for both PET probes. \(^{68}\)Ga-Pentixafor-PET/CT results were also compared to histological CXCR4 expression on neuronavigated surgical samples. \(^{68}\)Ga-Pentixafor-PET/CT was visually positive in 13/15 cases with SUV\(_{mean}\) and SUV\(_{max}\) of 3.0±1.5 and 3.9±2.0 respectively. Respective values for \(^{18}\)F-FET were 4.4±2.0 (SUV\(_{mean}\)) and 5.3±2.3 (SUV\(_{max}\)). TBR for SUV\(_{mean}\) and SUV\(_{max}\) were higher for \(^{68}\)Ga-Pentixafor than for \(^{18}\)F-FET (SUV\(_{mean}\) 154.0±90.7 vs. 4.1±1.3; SUV\(_{max}\) 70.3±44.0 and 3.8±1.2, p<0.01), respectively. Histological analysis confirmed CXCR4 expression in tumor areas with high \(^{68}\)Ga-Pentixafor uptake; regions of the same tumor without apparent \(^{68}\)Ga-Pentixafor uptake showed no or low receptor expression. In this pilot study, \(^{68}\)Ga-Pentixafor retention has been observed in the vast majority of glioblastoma lesions and served as readout for non-invasive determination of CXCR4 expression. Given the paramount importance of the CXCR4/SDF-1 axis in tumor biology, \(^{68}\)Ga-Pentixafor-PET/CT might prove a useful tool for sensitive, non-invasive in-vivo quantification of CXCR4 as well as selection of patients who might benefit from CXCR4-directed therapy.}, language = {en} }