@article{BonteHovestadtPoethke2009, author = {Bonte, Dries and Hovestadt, Thomas and Poethke, Hans-Joachim}, title = {Evolution of dispersal polymorphism and local adaptation of dispersal distance in spatially structured landscapes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47856}, year = {2009}, abstract = {Many organisms show polymorphism in dispersal distance strategies. This variation is particularly ecological relevant if it encompasses a functional separation of short- (SDD) and long-distance dispersal (LDD). It remains, however, an open question whether both parts of the dispersal kernel are similarly affected by landscape related selection pressures. We implemented an individual-based model to analyze the evolution of dispersal traits in fractal landscapes that vary in the proportion of habitat and its spatial configuration. Individuals are parthenogenetic with dispersal distance determined by two alleles on each individual's genome: one allele coding for the probability of global dispersal and one allele coding for the variance of a Gaussian local dispersal with mean value zero. Simulations show that mean distances of local dispersal and the probability of global dispersal, increase with increasing habitat availability, but that changes in the habitat's spatial autocorrelation impose opposing selective pressure: local dispersal distances decrease and global dispersal probabilities increase with decreasing spatial autocorrelation of the available habitat. Local adaptation of local dispersal distance emerges in landscapes with less than 70\% of clumped habitat. These results demonstrate that long and short distance dispersal evolve separately according to different properties of the landscape. The landscape structure may consequently largely affect the evolution of dispersal distance strategies and the level of dispersal polymorphism.}, language = {en} } @book{HovestadtRoeserMuehlenberg1991, author = {Hovestadt, Thomas and Roeser, J. and M{\"u}hlenberg, M.}, title = {Fl{\"a}chenbedarf von Tierpopulationen - als Kriterien f{\"u}r Maßnahmen des Biotopschutzes und als Datenbasis zur Beurteilung von Eingriffen in Natur und Landschaft}, isbn = {3-89336-057-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33645}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1991}, abstract = {Die Untersuchung des Fl{\"a}chenanspruchs von Tierpopulationen ist wegen folgender Gesichtspunkte wichtig: (a) Nachdem das Aussterben der Arten nicht nachl{\"a}ßt, erhebt sich die Frage nach den M{\"o}glichkeiten im Naturschutz, quantitative Forderungen zu begr{\"u}nden. (b) Da selbst gezielte Schutzmaßnahmen sinnlos werden, wenn die Voraussetzungen f{\"u}r das {\"u}berleben der Arten oder Lebensgemeinschaften nicht gegeben sind, muß man sich fragen, wieviel an Umweltverschmutzung reduziert werden muß, damit der Artenschutz verwirklicht werden kann. Der "Extensivierungsspielraum" an sich reicht nicht aus. Die Frage nach dem Fl{\"a}chenanspruch schließt den Gedanken einer "mindestens notwendigen" Fl{\"a}chensicherung ein. Der Fl{\"a}chenbedarf einer Tierpopulation wird bestimmt durch (A) den Raumbedarf der Reproduktionseinheit, und (B) der Gr{\"o}ße einer {\"u}berlebensf{\"a}higen Population. (A) variiert durch die individuell und im Jahresverlauf schwankenden Aktionsraumgr{\"o}ßen und die unterschiedliche Habitatqualit{\"a}t. Die {\"u}berlebensf{\"a}higkeit (B) einer Population ist von Zufallsprozessen abh{\"a}ngig und daher nur mit einer gewissen Wahrscheinlichkeit absch{\"a}tzbar. Vier verschiedene (nicht anthropogene) Faktoren k{\"o}nnen selbst in einem geeigneten Habi tat zum Aussterben von Populationen f{\"u}hren: (a) demographische und (b) genetische Zufallsprozesse, (c) Umweltschwankungen und (d) (Natur) katastrophen. Eine Absicherung gegen diese Risikofaktoren wird durch Vergr{\"o}ßerung der Population, Erh{\"o}hung der Zahl geeigneter Habitate und Verringerung der Isolierung zwischen den bewohnten Fl{\"a}chen erreicht. Eine Mindestforderung (Minimalareal die mindest notwendige Fl{\"a}che, die gesch{\"u}tzt werden muß) kann nur an der sog. "minimum viable population" bemessen werden. Die Gef{\"a}hrdungsgradanalyse ("population vulnerability analysis") f{\"u}r eine bestimmte Tierart liefert die notwendigen Angaben zur Habitatqualit{\"a}t, Fl{\"a}chengr{\"o}ße und Lage der Fl{\"a}chen, die f{\"u}r die Zukunftssicherung einer Population unter nat{\"u}rlichen Bedingungen (z.B. "mit 95\%iger Wahrscheinlichkeit die n{\"a}chsten 50 Jahre {\"u}berlebensf{\"a}hig" ) notwendig sind. Sowohl beim konstruktiven Artenschutz wie auch f{\"u}r die Schadensbegrenzung bei Eingriffsregelungen sollte eine Zielart ausgew{\"a}hlt werden, damit die Fl{\"a}chensicherung eindeutig quantitativ begr{\"u}ndet werden kann. Die Auswahl einer Zielart erfolgt nach Kriterien wie {\"u}berregionaler Gef{\"a}hrdungsgrad, Schl{\"u}sselart, Chancen der Populationssicherung und wird regional nach den bestehenden Voraussetzungen (Vorkommen, Habitatangebot, Regionalplan) angepaßt. Die wesentlichen Aspekte eines ZielartenKonzeptes sind: Der Fl{\"a}chenbedarf f{\"u}r Schutz- und Ausgleichsmaßnahmen wird an den {\"U}berlebensaussichten einzelner Tierpopulationen bemessen -- Die Zukunftssicherung muß nat{\"u}rliche Bedingungen (nicht st{\"a}ndige St{\"u}tzmaßnahmen) voraussetzen -- Die Analyse von Risikofaktoren bildet die Grundlage f{\"u}r die Absch{\"a}tzung der Zukunftsaussichten. Es sind wissenschaftlich begr{\"u}ndete, quantitative Aussagen m{\"o}glich. Durch die Sicherung von Fl{\"a}chen mit geeigneter Habitatqualit{\"a}t profitieren viele weitere Arten von den Schutzmaßnahmen. Es entsteht ein k{\"u}nftiger Forschungsbedarf vor allem zu den Gef{\"a}hrdungsgradanalysen ausgew{\"a}hlter Zielarten. F{\"u}r die praktische Umsetzung sind die Aufstellung einer regional angepaßten Zielartenliste, Habitateignungsanalysen und die Entwicklung von Populationsmodellen f{\"u}r Zielarten von seiten der biologischen Wissenschaft n{\"o}tig.}, subject = {Tiere}, language = {de} } @article{HornMitesserHovestadtetal.2019, author = {Horn, Melanie and Mitesser, Oliver and Hovestadt, Thomas and Yoshii, Taishi and Rieger, Dirk and Helfrich-F{\"o}rster, Charlotte}, title = {The circadian clock improves fitness in the fruit fly, Drosophila melanogaster}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, number = {1374}, issn = {1664-042X}, doi = {10.3389/fphys.2019.01374}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195738}, year = {2019}, abstract = {It is assumed that a properly timed circadian clock enhances fitness, but only few studies have truly demonstrated this in animals. We raised each of the three classical Drosophila period mutants for >50 generations in the laboratory in competition with wildtype flies. The populations were either kept under a conventional 24-h day or under cycles that matched the mutant's natural cycle, i.e., a 19-h day in the case of pers mutants and a 29-h day for perl mutants. The arrhythmic per0 mutants were grown together with wildtype flies under constant light that renders wildtype flies similar arrhythmic as the mutants. In addition, the mutants had to compete with wildtype flies for two summers in two consecutive years under outdoor conditions. We found that wildtype flies quickly outcompeted the mutant flies under the 24-h laboratory day and under outdoor conditions, but perl mutants persisted and even outnumbered the wildtype flies under the 29-h day in the laboratory. In contrast, pers and per0 mutants did not win against wildtype flies under the 19-h day and constant light, respectively. Our results demonstrate that wildtype flies have a clear fitness advantage in terms of fertility and offspring survival over the period mutants and - as revealed for perl mutants - this advantage appears maximal when the endogenous period resonates with the period of the environment. However, the experiments indicate that perl and pers persist at low frequencies in the population even under the 24-h day. This may be a consequence of a certain mating preference of wildtype and heterozygous females for mutant males and time differences in activity patterns between wildtype and mutants.}, language = {en} } @article{StormsJakharMitesseretal.2022, author = {Storms, Mona and Jakhar, Aryan and Mitesser, Oliver and Jechow, Andreas and H{\"o}lker, Franz and Degen, Tobias and Hovestadt, Thomas and Degen, Jacqueline}, title = {The rising moon promotes mate finding in moths}, series = {Communications Biology}, volume = {5}, journal = {Communications Biology}, doi = {10.1038/s42003-022-03331-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301365}, year = {2022}, abstract = {To counteract insect decline, it is essential to understand the underlying causes, especially for key pollinators such as nocturnal moths whose ability to orientate can easily be influenced by ambient light conditions. These comprise natural light sources as well as artificial light, but their specific relevance for moth orientation is still unknown. We investigated the influence of moonlight on the reproductive behavior of privet hawkmoths (Sphinx ligustri) at a relatively dark site where the Milky Way was visible while the horizon was illuminated by distant light sources and skyglow. We show that male moths use the moon for orientation and reach females significantly faster with increasing moon elevation. Furthermore, the choice of flight direction depended on the cardinal position of the moon but not on the illumination of the horizon caused by artificial light, indicating that the moon plays a key role in the orientation of male moths.}, language = {en} } @article{SchenkMitesserHovestadtetal.2018, author = {Schenk, Mariela and Mitesser, Oliver and Hovestadt, Thomas and Holzschuh, Andrea}, title = {Overwintering temperature and body condition shift emergence dates of spring-emerging solitary bees}, series = {PeerJ}, volume = {6}, journal = {PeerJ}, doi = {10.7717/peerj.4721}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228544}, pages = {e4721, 1-17}, year = {2018}, abstract = {Solitary bees in seasonal environments must align their life-cycles with favorable environmental conditions and resources; the timing of their emergence is highly fitness relevant. In several bee species, overwintering temperature influences both emergence date and body weight at emergence. High variability in emergence dates among specimens overwintering at the same temperatures suggests that the timing of emergence also depends on individual body conditions. However, possible causes for this variability, such as individual differences in body size or weight, have been rarely studied. In a climate chamber experiment using two spring-emerging mason bees (Osmia cornuta and O. bicornis), we investigated the relationship between temperature, emergence date, body weight, and body size, the last of which is not affected by overwintering temperature. Our study showed that body weight declined during hibernation more strongly in warm than in cold overwintering temperatures. Although bees emerged earlier in warm than in cold overwintering temperatures, at the time of emergence, bees in warm overwintering temperatures had lower body weights than bees in cold overwintering temperatures (exception of male O. cornuta). Among specimens that experienced the same overwintering temperatures, small and light bees emerged later than their larger and heavier conspecifics. Using a simple mechanistic model we demonstrated that spring-emerging solitary bees use a strategic approach and emerge at a date that is most promising for their individual fitness expectations. Our results suggest that warmer overwintering temperatures reduce bee fitness by causing a decrease in body weight at emergence. We showed furthermore that in order to adjust their emergence dates, bees use not only temperature but also their individual body condition as triggers. This may explain differing responses to climate warming within and among bee populations and may have consequences for bee-plant interactions as well as for the persistence of bee populations under climate change.}, language = {en} } @article{JoschinskiHovestadtKrauss2015, author = {Joschinski, Jens and Hovestadt, Thomas and Krauss, Jochen}, title = {Coping with shorter days: do phenology shifts constrain aphid fitness?}, series = {PeerJ}, volume = {3}, journal = {PeerJ}, number = {e1103}, doi = {10.7717/peerj.1103}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148382}, year = {2015}, abstract = {Climate change can alter the phenology of organisms. It may thus lead seasonal organisms to face different day lengths than in the past, and the fitness consequences of these changes are as yet unclear. To study such effects, we used the pea aphid Acyrthosiphon pisum as a model organism, as it has obligately asexual clones which can be used to study day length effects without eliciting a seasonal response. We recorded life-history traits under short and long days, both with two realistic temperature cycles with means differing by 2 °C. In addition, we measured the population growth of aphids on their host plant Pisum sativum. We show that short days reduce fecundity and the length of the reproductive period of aphids. Nevertheless, this does not translate into differences at the population level because the observed fitness costs only become apparent late in the individual's life. As expected, warm temperature shortens the development time by 0.7 days/°C, leading to faster generation times. We found no interaction of temperature and day length. We conclude that day length changes cause only relatively mild costs, which may not decelerate the increase in pest status due to climate change.}, language = {en} } @article{SiegerHovestadt2020, author = {Sieger, Charlotte Sophie and Hovestadt, Thomas}, title = {The degree of spatial variation relative to temporal variation influences evolution of dispersal}, series = {Oikos}, volume = {129}, journal = {Oikos}, number = {11}, doi = {10.1111/oik.07567}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239049}, pages = {1611 -- 1622}, year = {2020}, abstract = {In the face of ongoing global climate and land use change, organisms have multiple possibilities to cope with the modification of their environment. The two main possibilities are to either adapt locally or disperse to a more suitable habitat. The evolution of both local adaptation and dispersal interacts and can be influenced by the spatial and temporal variation (of e.g. temperature or precipitation). In an individual based model (IBM), we explore evolution of phenotypes in landscapes with varying degree of spatial relative to global temporal variation in order to examine its influence on the evolution of dispersal, niche optimum and niche width. The relationship between temporal and spatial variation did neither influence the evolution of local adaptation in the niche optimum nor of niche widths. Dispersal probability is highly influenced by the spatio-temporal relationship: with increasing spatial variation, dispersal probability decreases. Additionally, the shape of the distribution of the trait values over patch attributes switches from hump- to U-shaped. At low spatial variance more individuals emigrate from average habitats, at high spatial variance more from extreme habitats. The comparatively high dispersal probability in extreme patches of landscapes with a high spatial variation can be explained by evolutionary succession of two kinds of adaptive response. Early in the simulations, extreme patches in landscapes with a high spatial variability act as sink habitats, where population persistence depends on highly dispersive individuals with a wide niche. With ongoing evolution, local adaptation of the remaining individuals takes over, but simultaneously a possible bet-hedging strategy promotes higher dispersal probabilities in those habitats. Here, in generations that experience extreme shifts from the temporal mean of the patch attribute, the expected fitness becomes higher for dispersing individuals than for philopatric individuals. This means that under certain circumstances, both local adaptation and high dispersal probability can be selected for for coping with the projected environmental changes in the future.}, language = {en} } @article{ChaianunpornHovestadt2022, author = {Chaianunporn, Thotsapol and Hovestadt, Thomas}, title = {Emergence of spatially structured populations by area-concentrated search}, series = {Ecology and Evolution}, volume = {12}, journal = {Ecology and Evolution}, number = {12}, doi = {10.1002/ece3.9528}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311939}, year = {2022}, abstract = {The idea that populations are spatially structured has become a very powerful concept in ecology, raising interest in many research areas. However, despite dispersal being a core component of the concept, it typically does not consider the movement behavior underlying any dispersal. Using individual-based simulations in continuous space, we explored the emergence of a spatially structured population in landscapes with spatially heterogeneous resource distribution and with organisms following simple area-concentrated search (ACS); individuals do not, however, perceive or respond to any habitat attributes per se but only to their foraging success. We investigated the effects of different resource clustering pattern in landscapes (single large cluster vs. many small clusters) and different resource density on the spatial structure of populations and movement between resource clusters of individuals. As results, we found that foraging success increased with increasing resource density and decreasing number of resource clusters. In a wide parameter space, the system exhibited attributes of a spatially structured populations with individuals concentrated in areas of high resource density, searching within areas of resources, and "dispersing" in straight line between resource patches. "Emigration" was more likely from patches that were small or of low quality (low resource density), but we observed an interaction effect between these two parameters. With the ACS implemented, individuals tended to move deeper into a resource cluster in scenarios with moderate resource density than in scenarios with high resource density. "Looping" from patches was more likely if patches were large and of high quality. Our simulations demonstrate that spatial structure in populations may emerge if critical resources are heterogeneously distributed and if individuals follow simple movement rules (such as ACS). Neither the perception of habitat nor an explicit decision to emigrate from a patch on the side of acting individuals is necessary for the emergence of such spatial structure.}, language = {en} }