@article{HagemannNeuhausDahlmannetal.2019, author = {Hagemann, Carsten and Neuhaus, Nikolas and Dahlmann, Mathias and Kessler, Almuth F. and Kobelt, Dennis and Herrmann, Pia and Eyrich, Matthias and Freitag, Benjamin and Linsenmann, Thomas and Monoranu, Camelia M. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Stein, Ulrike}, title = {Circulating MACC1 transcripts in glioblastoma patients predict prognosis and treatment response}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {6}, issn = {2072-6694}, doi = {10.3390/cancers11060825}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197327}, year = {2019}, abstract = {Glioblastoma multiforme is the most aggressive primary brain tumor of adults, but lacksreliable and liquid biomarkers. We evaluated circulating plasma transcripts of metastasis-associatedin colon cancer-1 (MACC1), a prognostic biomarker for solid cancer entities, for prediction of clinicaloutcome and therapy response in glioblastomas. MACC1 transcripts were significantly higher inpatients compared to controls. Low MACC1 levels clustered together with other prognosticallyfavorable markers. It was associated with patients' prognosis in conjunction with the isocitratedehydrogenase (IDH) mutation status: IDH1 R132H mutation and low MACC1 was most favorable(median overall survival (OS) not yet reached), IDH1 wildtype and high MACC1 was worst (medianOS 8.1 months), while IDH1 wildtype and low MACC1 was intermediate (median OS 9.1 months).No patients displayed IDH1 R132H mutation and high MACC1. Patients with low MACC1 levelsreceiving standard therapy survived longer (median OS 22.6 months) than patients with high MACC1levels (median OS 8.1 months). Patients not receiving the standard regimen showed the worstprognosis, independent of MACC1 levels (low: 6.8 months, high: 4.4 months). Addition of circulatingMACC1 transcript levels to the existing prognostic workup may improve the accuracy of outcomeprediction and help define more precise risk categories of glioblastoma patients.}, language = {en} } @article{LinsenmannMonoranuAlkonyietal.2019, author = {Linsenmann, Thomas and Monoranu, Camelia M. and Alkonyi, Balint and Westermaier, Thomas and Hagemann, Carsten and Kessler, Almuth F. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario}, title = {Cerebellar liponeurocytoma - molecular signature of a rare entity and the importance of an accurate diagnosis}, series = {Interdisciplinary Neurosurgery}, volume = {16}, journal = {Interdisciplinary Neurosurgery}, doi = {10.1016/j.inat.2018.10.017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177652}, pages = {7-11}, year = {2019}, abstract = {Background: Cerebellar liponeurocytoma is an extremely rare tumour entity of the central nervous system. It is histologically characterised by prominent neuronal/neurocytic differentiation with focal lipidisation and corresponding histologically to WHO grade II. It typically develops in adults, and usually shows a low proliferative potential. Recurrences have been reported in almost 50\% of cases, and in some cases the recurrent tumour may display increased mitotic activity and proliferation index, vascular proliferations and necrosis. Thus pathological diagnosis of liponeurocytoma is challenging. This case presentation highlights the main clinical, radiographic and pathological features of a cerebellar liponeurocytoma. Case presentation: A 59-year-old, right-handed woman presented at our department with a short history of persistent headache, vertigo and gait disturbances. Examination at presentation revealed that the patient was awake, alert and fully oriented. The cranial nerve status was normal. Uncertainties were noted in the bilateral finger-to-nose testing with bradydiadochokinesis on both sides. Strength was full and no pronator drift was observed. Sensation was intact. No signs of pyramidal tract dysfunction were detected. Her gait appeared insecure. The patient underwent surgical resection. Afterward no further disturbances could be detected. Conclusions: To date >40 cases of liponeurocytoma have been reported, including cases with supratentorial location. A review of the 5 published cases of recurrent cerebellar. Liponeurocytoma revealed that the median interval between the first and second relapse was rather short, indicating uncertain malignant potential. The most recent WHO classification of brain tumours (2016) classifies the cerebellar liponeurocytoma as a separate entity and assigns the tumour to WHO grade II. Medulloblastoma is the most important differential diagnosis commonly seen in children and young adults. In contrast, cerebellar liponeurocytoma is typically diagnosed in adults. The importance of accurate diagnosis should not be underestimated especially in the view of possible further therapeutic interventions and for the determination of the patient's prognosis.}, language = {en} } @article{LinsenmannCattaneoMaerzetal.2021, author = {Linsenmann, Thomas and Cattaneo, Andrea and M{\"a}rz, Alexander and Weiland, Judith and Stetter, Christian and Nickl, Robert and Westermaier, Thomas}, title = {Combined frameless stereotactical biopsy and intraoperative cerebral angiography by 3D-rotational fluoroscopy with intravenous contrast administration: a feasibility study}, series = {BMC Medical Imaging}, volume = {21}, journal = {BMC Medical Imaging}, doi = {10.1186/s12880-021-00622-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270370}, year = {2021}, abstract = {Background Mobile 3-dimensional fluoroscopes are an integral part of modern neurosurgical operating theatres and can also be used in combination with free available image post processing to depict cerebral vessels. In preparation of stereotactic surgery, preoperative Computed Tomography (CT) may be required for image fusion. Contrast CT may be of further advantage for image fusion as it regards the vessel anatomy in trajectory planning. Time-consuming in-hospital transports are necessary for this purpose. Mobile 3D-fluoroscopes may be used to generate a CT equal preoperative data set without an in-hospital transport. This study was performed to determine the feasibility and image quality of intraoperative 3-dimensional fluoroscopy with intravenous contrast administration in combination with stereotactical procedures. Methods 6 patients were included in this feasibility study. After fixation in a radiolucent Mayfield clamp a rotational fluoroscopy scan was performed with 50 mL iodine contrast agent. The image data sets were merged with the existing MRI images at a planning station and visually evaluated by two observer. The operation times were compared between the frame-based and frameless systems ("skin-to-skin" and "OR entry to exit"). Results The procedure proves to be safe. The entire procedure from fluoroscope positioning to the transfer to the planning station took 5-6 min with an image acquisition time of 24 s. In 5 of 6 cases, the fused imaging was able to reproduce the vascular anatomy accurately and in good quality. Both time end-points were significantly shorter compared to frame-based interventions. Conclusion The images could easily be transferred to the planning and navigation system and were successfully merged with the MRI data set. The procedure can be completely integrated into the surgical workflow. Preoperative CT imaging or transport under anaesthesia may even be replaced by this technique in the future. Furthermore, hemorrhages can be successfully visualized intraoperatively and might prevent time delays in emergencies.}, language = {en} } @article{LinsenmannMaerzDufneretal.2021, author = {Linsenmann, Thomas and M{\"a}rz, Alexander and Dufner, Vera and Stetter, Christian and Weiland, Judith and Westermaier, Thomas}, title = {Optimization of radiation settings for angiography using 3D fluoroscopy for imaging of intracranial aneurysms}, series = {Computer Assisted Surgery}, volume = {26}, journal = {Computer Assisted Surgery}, number = {1}, doi = {10.1080/24699322.2021.1894240}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259251}, pages = {22-30}, year = {2021}, abstract = {Mobile 3D fluoroscopes have become increasingly available in neurosurgical operating rooms. We recently reported its use for imaging cerebral vascular malformations and aneurysms. This study was conducted to evaluate various radiation settings for the imaging of cerebral aneurysms before and after surgical occlusion. Eighteen patients with cerebral aneurysms with the indication for surgical clipping were included in this prospective analysis. Before surgery the patients were randomized into one of three different scan protocols according (default settings of the 3D fluoroscope): Group 1: 110 kV, 80 mA (enhanced cranial mode), group 2: 120 kV, 64 mA (lumbar spine mode), group 3: 120 kV, 25 mA (head/neck settings). Prior to surgery, a rotational fluoroscopy scan (duration 24 s) was performed without contrast agent followed by another scan with 50 ml of intravenous iodine contrast agent. The image files of both scans were transferred to an Apple PowerMac(R) workstation, subtracted and reconstructed using OsiriX(R) MD 10.0 software. The procedure was repeated after clip placement. The image quality regarding preoperative aneurysm configuration and postoperative assessment of aneurysm occlusion and vessel patency was analyzed by 2 independent reviewers using a 6-grade scale. This technique quickly supplies images of adequate quality to depict intracranial aneurysms and distal vessel patency after aneurysm clipping. Regarding these features, a further optimization to our previous protocol seems possible lowering the voltage and increasing tube current. For quick intraoperative assessment, image subtraction seems not necessary. Thus, a native scan without a contrast agent is not necessary. Further optimization may be possible using a different contrast injection protocol.}, language = {en} }