@article{ZahoGhirlandoAlfonsoetal.2015, author = {Zaho, Huaying and Ghirlando, Rodolfo and Alfonso, Carlos and Arisaka, Fumio and Attali, Ilan and Bain, David L. and Bakhtina, Marina M. and Becker, Donald F. and Bedwell, Gregory J. and Bekdemir, Ahmet and Besong, Tabot M. D. and Birck, Catherine and Brautigam, Chad A. and Brennerman, William and Byron, Olwyn and Bzowska, Agnieszka and Chaires, Jonathan B. and Chaton, Catherine T. and Coelfen, Helmbut and Connaghan, Keith D. and Crowley, Kimberly A. and Curth, Ute and Daviter, Tina and Dean, William L. and Diez, Ana I. and Ebel, Christine and Eckert, Debra M. and Eisele, Leslie E. and Eisenstein, Edward and England, Patrick and Escalante, Carlos and Fagan, Jeffrey A. and Fairman, Robert and Finn, Ron M. and Fischle, Wolfgang and Garcia de la Torre, Jose and Gor, Jayesh and Gustafsson, Henning and Hall, Damien and Harding, Stephen E. and Hernandez Cifre, Jose G. and Herr, Andrew B. and Howell, Elizabeth E. and Isaac, Richard S. and Jao, Shu-Chuan and Jose, Davis and Kim, Soon-Jong and Kokona, Bashkim and Kornblatt, Jack A. and Kosek, Dalibor and Krayukhina, Elena and Krzizike, Daniel and Kusznir, Eric A. and Kwon, Hyewon and Larson, Adam and Laue, Thomas M. and Le Roy, Aline and Leech, Andrew P. and Lilie, Hauke and Luger, Karolin and Luque-Ortega, Juan R. and Ma, Jia and May, Carrie A. and Maynard, Ernest L. and Modrak-Wojcik, Anna and Mok, Yee-Foong and M{\"u}cke, Norbert and Nagel-Steger, Luitgard and Narlikar, Geeta J. and Noda, Masanori and Nourse, Amanda and Obsil, Thomas and Park, Chad K and Park, Jin-Ku and Pawelek, Peter D. and Perdue, Erby E. and Perkins, Stephen J. and Perugini, Matthew A. and Peterson, Craig L. and Peverelli, Martin G. and Piszczek, Grzegorz and Prag, Gali and Prevelige, Peter E. and Raynal, Bertrand D. E. and Rezabkova, Lenka and Richter, Klaus and Ringel, Alison E. and Rosenberg, Rose and Rowe, Arthur J. and Rufer, Arne C. and Scott, David J. and Seravalli, Javier G. and Solovyova, Alexandra S. and Song, Renjie and Staunton, David and Stoddard, Caitlin and Stott, Katherine and Strauss, Holder M. and Streicher, Werner W. and Sumida, John P. and Swygert, Sarah G. and Szczepanowski, Roman H. and Tessmer, Ingrid and Toth, Ronald T. and Tripathy, Ashutosh and Uchiyama, Susumu and Uebel, Stephan F. W. and Unzai, Satoru and Gruber, Anna Vitlin and von Hippel, Peter H. and Wandrey, Christine and Wang, Szu-Huan and Weitzel, Steven E and Wielgus-Kutrowska, Beata and Wolberger, Cynthia and Wolff, Martin and Wright, Edward and Wu, Yu-Sung and Wubben, Jacinta M. and Schuck, Peter}, title = {A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0126420}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151903}, pages = {e0126420}, year = {2015}, abstract = {Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304\(\pm\)0.188) S (4.4\%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of \(\pm\)0.030 S (0.7\%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.}, language = {en} } @article{ManchiaAdliAkulaetal.2013, author = {Manchia, Mirko and Adli, Mazda and Akula, Nirmala and Arda, Raffaella and Aubry, Jean-Michel and Backlund, Lena and Banzato, Claudio E. M. and Baune, Bernhard T. and Bellivier, Frank and Bengesser, Susanne and Biernacka, Joanna M. and Brichant-Petitjean, Clara and Bui, Elise and Calkin, Cynthia V. and Cheng, Andrew Tai Ann and Chillotti, Caterina and Cichon, Sven and Clark, Scott and Czerski, Piotr M. and Dantas, Clarissa and Del Zompo, Maria and DePaulo, J. Raymond and Detera-Wadleigh, Sevilla D. and Etain, Bruno and Falkai, Peter and Fris{\´e}n, Louise and Frye, Mark A. and Fullerton, Jan and Gard, S{\´e}bastien and Garnham, Julie and Goes, Fernando S. and Grof, Paul and Gruber, Oliver and Hashimoto, Ryota and Hauser, Joanna and Heilbronner, Urs and Hoban, Rebecca and Hou, Liping and Jamain, St{\´e}phane and Kahn, Jean-Pierre and Kassem, Layla and Kato, Tadafumi and Kelsoe, John R. and Kittel-Schneider, Sarah and Kliwicki, Sebastian and Kuo, Po-Hsiu and Kusumi, Ichiro and Laje, Gonzalo and Lavebratt, Catharina and Leboyer, Marion and Leckband, Susan G. and L{\´o}pez Jaramillo, Carlos A. and Maj, Mario and Malafosse, Alain and Martinsson, Lina and Masui, Takuya and Mitchell, Philip B. and Mondimore, Frank and Monteleone, Palmiero and Nallet, Audrey and Neuner, Maria and Nov{\´a}k, Tom{\´a}s and O'Donovan, Claire and {\"O}sby, Urban and Ozaki, Norio and Perlis, Roy H. and Pfennig, Andrea and Potash, James B. and Reich-Erkelenz, Daniela and Reif, Andreas and Reininghaus, Eva and Richardson, Sara and Rouleau, Guy A. and Rybakowski, Janusz K. and Schalling, Martin and Schofield, Peter R. and Schubert, Oliver K. and Schweizer, Barbara and Seem{\"u}ller, Florian and Grigoroiu-Serbanescu, Maria and Severino, Giovanni and Seymour, Lisa R. and Slaney, Claire and Smoller, Jordan W. and Squassina, Alessio and Stamm, Thomas and Steele, Jo and Stopkova, Pavla and Tighe, Sarah K. and Tortorella, Alfonso and Turecki, Gustavo and Wray, Naomi R. and Wright, Adam and Zandi, Peter P. and Zilles, David and Bauer, Michael and Rietschel, Marcella and McMahon, Francis J. and Schulze, Thomas G. and Alda, Martin}, title = {Assessment of Response to Lithium Maintenance Treatment in Bipolar Disorder: A Consortium on Lithium Genetics (ConLiGen) Report}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0065636}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130938}, pages = {e65636}, year = {2013}, abstract = {Objective: The assessment of response to lithium maintenance treatment in bipolar disorder (BD) is complicated by variable length of treatment, unpredictable clinical course, and often inconsistent compliance. Prospective and retrospective methods of assessment of lithium response have been proposed in the literature. In this study we report the key phenotypic measures of the "Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder" scale currently used in the Consortium on Lithium Genetics (ConLiGen) study. Materials and Methods: Twenty-nine ConLiGen sites took part in a two-stage case-vignette rating procedure to examine inter-rater agreement [Kappa (\(\kappa\))] and reliability [intra-class correlation coefficient (ICC)] of lithium response. Annotated first-round vignettes and rating guidelines were circulated to expert research clinicians for training purposes between the two stages. Further, we analyzed the distributional properties of the treatment response scores available for 1,308 patients using mixture modeling. Results: Substantial and moderate agreement was shown across sites in the first and second sets of vignettes (\(\kappa\) = 0.66 and \(\kappa\) = 0.54, respectively), without significant improvement from training. However, definition of response using the A score as a quantitative trait and selecting cases with B criteria of 4 or less showed an improvement between the two stages (\(ICC_1 = 0.71\) and \(ICC_2 = 0.75\), respectively). Mixture modeling of score distribution indicated three subpopulations (full responders, partial responders, non responders). Conclusions: We identified two definitions of lithium response, one dichotomous and the other continuous, with moderate to substantial inter-rater agreement and reliability. Accurate phenotypic measurement of lithium response is crucial for the ongoing ConLiGen pharmacogenomic study.}, language = {en} } @article{BousquetAntoBachertetal.2021, author = {Bousquet, Jean and Anto, Josep M. and Bachert, Claus and Haahtela, Tari and Zuberbier, Torsten and Czarlewski, Wienczyslawa and Bedbrook, Anna and Bosnic-Anticevich, Sinthia and Walter Canonica, G. and Cardona, Victoria and Costa, Elisio and Cruz, Alvaro A. and Erhola, Marina and Fokkens, Wytske J. and Fonseca, Joao A. and Illario, Maddalena and Ivancevich, Juan-Carlos and Jutel, Marek and Klimek, Ludger and Kuna, Piotr and Kvedariene, Violeta and Le, LTT and Larenas-Linnemann, D{\´e}sir{\´e}e E. and Laune, Daniel and Louren{\c{c}}o, Olga M. and Mel{\´e}n, Erik and Mullol, Joaquim and Niedoszytko, Marek and Odemyr, Mika{\"e}la and Okamoto, Yoshitaka and Papadopoulos, Nikos G. and Patella, Vincenzo and Pfaar, Oliver and Pham-Thi, Nh{\^a}n and Rolland, Christine and Samolinski, Boleslaw and Sheikh, Aziz and Sofiev, Mikhail and Suppli Ulrik, Charlotte and Todo-Bom, Ana and Tomazic, Peter-Valentin and Toppila-Salmi, Sanna and Tsiligianni, Ioanna and Valiulis, Arunas and Valovirta, Erkka and Ventura, Maria-Teresa and Walker, Samantha and Williams, Sian and Yorgancioglu, Arzu and Agache, Ioana and Akdis, Cezmi A. and Almeida, Rute and Ansotegui, Ignacio J. and Annesi-Maesano, Isabella and Arnavielhe, Sylvie and Basaga{\~n}a, Xavier and D. Bateman, Eric and B{\´e}dard, Annabelle and Bedolla-Barajas, Martin and Becker, Sven and Bennoor, Kazi S. and Benveniste, Samuel and Bergmann, Karl C. and Bewick, Michael and Bialek, Slawomir and E. Billo, Nils and Bindslev-Jensen, Carsten and Bjermer, Leif and Blain, Hubert and Bonini, Matteo and Bonniaud, Philippe and Bosse, Isabelle and Bouchard, Jacques and Boulet, Louis-Philippe and Bourret, Rodolphe and Boussery, Koen and Braido, Fluvio and Briedis, Vitalis and Briggs, Andrew and Brightling, Christopher E. and Brozek, Jan and Brusselle, Guy and Brussino, Luisa and Buhl, Roland and Buonaiuto, Roland and Calderon, Moises A. and Camargos, Paulo and Camuzat, Thierry and Caraballo, Luis and Carriazo, Ana-Maria and Carr, Warner and Cartier, Christine and Casale, Thomas and Cecchi, Lorenzo and Cepeda Sarabia, Alfonso M. and H. Chavannes, Niels and Chkhartishvili, Ekaterine and Chu, Derek K. and Cingi, Cemal and Correia de Sousa, Jaime and Costa, David J. and Courbis, Anne-Lise and Custovic, Adnan and Cvetkosvki, Biljana and D'Amato, Gennaro and da Silva, Jane and Dantas, Carina and Dokic, Dejan and Dauvilliers, Yves and De Feo, Giulia and De Vries, Govert and Devillier, Philippe and Di Capua, Stefania and Dray, Gerard and Dubakiene, Ruta and Durham, Stephen R. and Dykewicz, Mark and Ebisawa, Motohiro and Gaga, Mina and El-Gamal, Yehia and Heffler, Enrico and Emuzyte, Regina and Farrell, John and Fauquert, Jean-Luc and Fiocchi, Alessandro and Fink-Wagner, Antje and Fontaine, Jean-Fran{\c{c}}ois and Fuentes Perez, Jos{\´e} M. and Gemicioğlu, Bilun and Gamkrelidze, Amiran and Garcia-Aymerich, Judith and Gevaert, Philippe and Gomez, Ren{\´e} Maximiliano and Gonz{\´a}lez Diaz, Sandra and Gotua, Maia and Guldemond, Nick A. and Guzm{\´a}n, Maria-Antonieta and Hajjam, Jawad and Huerta Villalobos, Yunuen R. and Humbert, Marc and Iaccarino, Guido and Ierodiakonou, Despo and Iinuma, Tomohisa and Jassem, Ewa and Joos, Guy and Jung, Ki-Suck and Kaidashev, Igor and Kalayci, Omer and Kardas, Przemyslaw and Keil, Thomas and Khaitov, Musa and Khaltaev, Nikolai and Kleine-Tebbe, Jorg and Kouznetsov, Rostislav and Kowalski, Marek L. and Kritikos, Vicky and Kull, Inger and La Grutta, Stefania and Leonardini, Lisa and Ljungberg, Henrik and Lieberman, Philip and Lipworth, Brian and Lodrup Carlsen, Karin C. and Lopes-Pereira, Catarina and Loureiro, Claudia C. and Louis, Renaud and Mair, Alpana and Mahboub, Bassam and Makris, Micha{\"e}l and Malva, Joao and Manning, Patrick and Marshall, Gailen D. and Masjedi, Mohamed R. and Maspero, Jorge F. and Carreiro-Martins, Pedro and Makela, Mika and Mathieu-Dupas, Eve and Maurer, Marcus and De Manuel Keenoy, Esteban and Melo-Gomes, Elisabete and Meltzer, Eli O. and Menditto, Enrica and Mercier, Jacques and Micheli, Yann and Miculinic, Neven and Mihaltan, Florin and Milenkovic, Branislava and Mitsias, Dimitirios I. and Moda, Giuliana and Mogica-Martinez, Maria-Dolores and Mohammad, Yousser and Montefort, Steve and Monti, Ricardo and Morais-Almeida, Mario and M{\"o}sges, Ralph and M{\"u}nter, Lars and Muraro, Antonella and Murray, Ruth and Naclerio, Robert and Napoli, Luigi and Namazova-Baranova, Leyla and Neffen, Hugo and Nekam, Kristoff and Neou, Angelo and Nordlund, Bj{\"o}rn and Novellino, Ettore and Nyembue, Dieudonn{\´e} and O'Hehir, Robyn and Ohta, Ken and Okubo, Kimi and Onorato, Gabrielle L. and Orlando, Valentina and Ouedraogo, Solange and Palamarchuk, Julia and Pali-Sch{\"o}ll, Isabella and Panzner, Peter and Park, Hae-Sim and Passalacqua, Gianni and P{\´e}pin, Jean-Louis and Paulino, Ema and Pawankar, Ruby and Phillips, Jim and Picard, Robert and Pinnock, Hilary and Plavec, Davor and Popov, Todor A. and Portejoie, Fabienne and Price, David and Prokopakis, Emmanuel P. and Psarros, Fotis and Pugin, Benoit and Puggioni, Francesca and Quinones-Delgado, Pablo and Raciborski, Filip and Rajabian-S{\"o}derlund, Rojin and Regateiro, Frederico S. and Reitsma, Sietze and Rivero-Yeverino, Daniela and Roberts, Graham and Roche, Nicolas and Rodriguez-Zagal, Erendira and Rolland, Christine and Roller-Wirnsberger, Regina E. and Rosario, Nelson and Romano, Antonino and Rottem, Menachem and Ryan, Dermot and Salim{\"a}ki, Johanna and Sanchez-Borges, Mario M. and Sastre, Joaquin and Scadding, Glenis K. and Scheire, Sophie and Schmid-Grendelmeier, Peter and Sch{\"u}nemann, Holger J. and Sarquis Serpa, Faradiba and Shamji, Mohamed and Sisul, Juan-Carlos and Sofiev, Mikhail and Sol{\´e}, Dirceu and Somekh, David and Sooronbaev, Talant and Sova, Milan and Spertini, Fran{\c{c}}ois and Spranger, Otto and Stellato, Cristiana and Stelmach, Rafael and Thibaudon, Michel and To, Teresa and Toumi, Mondher and Usmani, Omar and Valero, Antonio A. and Valenta, Rudolph and Valentin-Rostan, Marylin and Pereira, Marilyn Urrutia and van der Kleij, Rianne and Van Eerd, Michiel and Vandenplas, Olivier and Vasankari, Tuula and Vaz Carneiro, Antonio and Vezzani, Giorgio and Viart, Fr{\´e}d{\´e}ric and Viegi, Giovanni and Wallace, Dana and Wagenmann, Martin and Wang, De Yun and Waserman, Susan and Wickman, Magnus and Williams, Dennis M. and Wong, Gary and Wroczynski, Piotr and Yiallouros, Panayiotis K. and Yusuf, Osman M. and Zar, Heather J. and Zeng, St{\´e}phane and Zernotti, Mario E. and Zhang, Luo and Shan Zhong, Nan and Zidarn, Mihaela}, title = {ARIA digital anamorphosis: Digital transformation of health and care in airway diseases from research to practice}, series = {Allergy}, volume = {76}, journal = {Allergy}, number = {1}, doi = {10.1111/all.14422}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228339}, pages = {168 -- 190}, year = {2021}, abstract = {Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.}, language = {en} } @article{DoerkPeterlongoMannermaaetal.2019, author = {D{\"o}rk, Thilo and Peterlongo, Peter and Mannermaa, Arto and Bolla, Manjeet K. and Wang, Qin and Dennis, Joe and Ahearn, Thomas and Andrulis, Irene L. and Anton-Culver, Hoda and Arndt, Volker and Aronson, Kristan J. and Augustinsson, Annelie and Beane Freeman, Laura E. and Beckmann, Matthias W. and Beeghly-Fadiel, Alicia and Behrens, Sabine and Bermisheva, Marina and Blomqvist, Carl and Bogdanova, Natalia V. and Bojesen, Stig E. and Brauch, Hiltrud and Brenner, Hermann and Burwinkel, Barbara and Canzian, Federico and Chan, Tsun L. and Chang-Claude, Jenny and Chanock, Stephen J. and Choi, Ji-Yeob and Christiansen, Hans and Clarke, Christine L. and Couch, Fergus J. and Czene, Kamila and Daly, Mary B. and dos-Santos-Silva, Isabel and Dwek, Miriam and Eccles, Diana M. and Ekici, Arif B. and Eriksson, Mikael and Evans, D. Gareth and Fasching, Peter A. and Figueroa, Jonine and Flyger, Henrik and Fritschi, Lin and Gabrielson, Marike and Gago-Dominguez, Manuela and Gao, Chi and Gapstur, Susan M. and Garc{\´i}a-Closas, Montserrat and Garc{\´i}a-S{\´a}enz, Jos{\´e} A. and Gaudet, Mia M. and Giles, Graham G. and Goldberg, Mark S. and Goldgar, David E. and Guen{\´e}l, Pascal and Haeberle, Lothar and Haimann, Christopher A. and H{\aa}kansson, Niclas and Hall, Per and Hamann, Ute and Hartman, Mikael and Hauke, Jan and Hein, Alexander and Hillemanns, Peter and Hogervorst, Frans B. L. and Hooning, Maartje J. and Hopper, John L. and Howell, Tony and Huo, Dezheng and Ito, Hidemi and Iwasaki, Motoki and Jakubowska, Anna and Janni, Wolfgang and John, Esther M. and Jung, Audrey and Kaaks, Rudolf and Kang, Daehee and Kapoor, Pooja Middha and Khusnutdinova, Elza and Kim, Sung-Won and Kitahara, Cari M. and Koutros, Stella and Kraft, Peter and Kristensen, Vessela N. and Kwong, Ava and Lambrechts, Diether and Le Marchand, Loic and Li, Jingmei and Lindstr{\"o}m, Sara and Linet, Martha and Lo, Wing-Yee and Long, Jirong and Lophatananon, Artitaya and Lubiński, Jan and Manoochehri, Mehdi and Manoukian, Siranoush and Margolin, Sara and Martinez, Elena and Matsuo, Keitaro and Mavroudis, Dimitris and Meindl, Alfons and Menon, Usha and Milne, Roger L. and Mohd Taib, Nur Aishah and Muir, Kenneth and Mulligan, Anna Marie and Neuhausen, Susan L. and Nevanlinna, Heli and Neven, Patrick and Newman, William G. and Offit, Kenneth and Olopade, Olufunmilayo I. and Olshan, Andrew F. and Olson, Janet E. and Olsson, H{\aa}kan and Park, Sue K. and Park-Simon, Tjoung-Won and Peto, Julian and Plaseska-Karanfilska, Dijana and Pohl-Rescigno, Esther and Presneau, Nadege and Rack, Brigitte and Radice, Paolo and Rashid, Muhammad U. and Rennert, Gad and Rennert, Hedy S. and Romero, Atocha and Ruebner, Matthias and Saloustros, Emmanouil and Schmidt, Marjanka K. and Schmutzler, Rita K. and Schneider, Michael O. and Schoemaker, Minouk J. and Scott, Christopher and Shen, Chen-Yang and Shu, Xiao-Ou and Simard, Jaques and Slager, Susan and Smichkoska, Snezhana and Southey, Melissa C. and Spinelli, John J. and Stone, Jennifer and Surowy, Harald and Swerdlow, Anthony J. and Tamimi, Rulla M. and Tapper, William J. and Teo, Soo H. and Terry, Mary Beth and Toland, Amanda E. and Tollenaar, Rob A. E. M. and Torres, Diana and Torres-Mej{\´i}a, Gabriela and Troester, Melissa A. and Truong, Th{\´e}r{\`e}se and Tsugane, Shoichiro and Untch, Michael and Vachon, Celine M. and van den Ouweland, Ans M. W. and van Veen, Elke M. and Vijai, Joseph and Wendt, Camilla and Wolk, Alicja and Yu, Jyh-Cherng and Zheng, Wei and Ziogas, Argyrios and Ziv, Elad and Dunnig, Alison and Pharaoh, Paul D. P. and Schindler, Detlev and Devilee, Peter and Easton, Douglas F.}, title = {Two truncating variants in FANCC and breast cancer risk}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, organization = {ABCTB Investigators, NBCS Collaborators}, doi = {10.1038/s41598-019-48804-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222838}, year = {2019}, abstract = {Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95\%CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.}, language = {en} } @article{DavisYuKeenanetal.2013, author = {Davis, Lea K. and Yu, Dongmei and Keenan, Clare L. and Gamazon, Eric R. and Konkashbaev, Anuar I. and Derks, Eske M. and Neale, Benjamin M. and Yang, Jian and Lee, S. Hong and Evans, Patrick and Barr, Cathy L. and Bellodi, Laura and Benarroch, Fortu and Berrio, Gabriel Bedoya and Bienvenu, Oscar J. and Bloch, Michael H. and Blom, Rianne M. and Bruun, Ruth D. and Budman, Cathy L. and Camarena, Beatriz and Campbell, Desmond and Cappi, Carolina and Cardona Silgado, Julio C. and Cath, Danielle C. and Cavallini, Maria C. and Chavira, Denise A. and Chouinard, Sylvian and Conti, David V. and Cook, Edwin H. and Coric, Vladimir and Cullen, Bernadette A. and Deforce, Dieter and Delorme, Richard and Dion, Yves and Edlund, Christopher K. and Egberts, Karin and Falkai, Peter and Fernandez, Thomas V. and Gallagher, Patience J. and Garrido, Helena and Geller, Daniel and Girard, Simon L. and Grabe, Hans J. and Grados, Marco A. and Greenberg, Benjamin D. and Gross-Tsur, Varda and Haddad, Stephen and Heiman, Gary A. and Hemmings, Sian M. J. and Hounie, Ana G. and Illmann, Cornelia and Jankovic, Joseph and Jenike, Micheal A. and Kennedy, James L. and King, Robert A. and Kremeyer, Barbara and Kurlan, Roger and Lanzagorta, Nuria and Leboyer, Marion and Leckman, James F. and Lennertz, Leonhard and Liu, Chunyu and Lochner, Christine and Lowe, Thomas L. and Macciardi, Fabio and McCracken, James T. and McGrath, Lauren M. and Restrepo, Sandra C. Mesa and Moessner, Rainald and Morgan, Jubel and Muller, Heike and Murphy, Dennis L. and Naarden, Allan L. and Ochoa, William Cornejo and Ophoff, Roel A. and Osiecki, Lisa and Pakstis, Andrew J. and Pato, Michele T. and Pato, Carlos N. and Piacentini, John and Pittenger, Christopher and Pollak, Yehunda and Rauch, Scott L. and Renner, Tobias J. and Reus, Victor I. and Richter, Margaret A. and Riddle, Mark A. and Robertson, Mary M. and Romero, Roxana and Ros{\`a}rio, Maria C. and Rosenberg, David and Rouleau, Guy A. and Ruhrmann, Stephan and Ruiz-Linares, Andreas and Sampaio, Aline S. and Samuels, Jack and Sandor, Paul and Sheppard, Broke and Singer, Harvey S. and Smit, Jan H. and Stein, Dan J. and Strengman, E. and Tischfield, Jay A. and Valencia Duarte, Ana V. and Vallada, Homero and Van Nieuwerburgh, Flip and Veenstra-VanderWeele, Jeremy and Walitza, Susanne and Wang, Ying and Wendland, Jens R. and Westenberg, Herman G. M. and Shugart, Yin Yao and Miguel, Euripedes C. and McMahon, William and Wagner, Michael and Nicolini, Humberto and Posthuma, Danielle and Hanna, Gregory L. and Heutink, Peter and Denys, Damiaan and Arnold, Paul D. and Oostra, Ben A. and Nestadt, Gerald and Freimer, Nelson B. and Pauls, David L. and Wray, Naomi R. and Stewart, S. Evelyn and Mathews, Carol A. and Knowles, James A. and Cox, Nancy J. and Scharf, Jeremiah M.}, title = {Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture}, series = {PLoS Genetics}, volume = {9}, journal = {PLoS Genetics}, number = {10}, issn = {1553-7390}, doi = {10.1371/journal.pgen.1003864}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127377}, pages = {e1003864}, year = {2013}, abstract = {The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS), using GCTA. Our analysis yielded a heritability point estimate of 0.58 (se = 0.09, p = 5.64e-12) for TS, and 0.37 (se = 0.07, p = 1.5e-07) for OCD. In addition, we conducted multiple genomic partitioning analyses to identify genomic elements that concentrate this heritability. We examined genomic architectures of TS and OCD by chromosome, MAF bin, and functional annotations. In addition, we assessed heritability for early onset and adult onset OCD. Among other notable results, we found that SNPs with a minor allele frequency of less than 5\% accounted for 21\% of the TS heritability and 0\% of the OCD heritability. Additionally, we identified a significant contribution to TS and OCD heritability by variants significantly associated with gene expression in two regions of the brain (parietal cortex and cerebellum) for which we had available expression quantitative trait loci (eQTLs). Finally we analyzed the genetic correlation between TS and OCD, revealing a genetic correlation of 0.41 (se = 0.15, p = 0.002). These results are very close to previous heritability estimates for TS and OCD based on twin and family studies, suggesting that very little, if any, heritability is truly missing (i.e., unassayed) from TS and OCD GWAS studies of common variation. The results also indicate that there is some genetic overlap between these two phenotypically-related neuropsychiatric disorders, but suggest that the two disorders have distinct genetic architectures.}, language = {en} } @article{RaynerColemanPurvesetal.2019, author = {Rayner, Christopher and Coleman, Jonathan R. I. and Purves, Kirstin L. and Hodsoll, John and Goldsmith, Kimberley and Alpers, Georg W. and Andersson, Evelyn and Arolt, Volker and Boberg, Julia and B{\"o}gels, Susan and Creswell, Cathy and Cooper, Peter and Curtis, Charles and Deckert, J{\"u}rgen and Domschke, Katharina and El Alaoui, Samir and Fehm, Lydia and Fydrich, Thomas and Gerlach, Alexander L. and Grocholewski, Anja and Hahlweg, Kurt and Hamm, Alfons and Hedman, Erik and Heiervang, Einar R. and Hudson, Jennifer L. and J{\"o}hren, Peter and Keers, Robert and Kircher, Tilo and Lang, Thomas and Lavebratt, Catharina and Lee, Sang-hyuck and Lester, Kathryn J. and Lindefors, Nils and Margraf, J{\"u}rgen and Nauta, Maaike and Pan{\´e}-Farr{\´e}, Christiane A. and Pauli, Paul and Rapee, Ronald M. and Reif, Andreas and Rief, Winfried and Roberts, Susanna and Schalling, Martin and Schneider, Silvia and Silverman, Wendy K. and Str{\"o}hle, Andreas and Teismann, Tobias and Thastum, Mikael and Wannem{\"u}ller, Andre and Weber, Heike and Wittchen, Hans-Ulrich and Wolf, Christiane and R{\"u}ck, Christian and Breen, Gerome and Eley, Thalia C.}, title = {A genome-wide association meta-analysis of prognostic outcomes following cognitive behavioural therapy in individuals with anxiety and depressive disorders}, series = {Translational Psychiatry}, volume = {9}, journal = {Translational Psychiatry}, number = {150}, doi = {10.1038/s41398-019-0481-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225048}, pages = {1-13}, year = {2019}, abstract = {Major depressive disorder and the anxiety disorders are highly prevalent, disabling and moderately heritable. Depression and anxiety are also highly comorbid and have a strong genetic correlation (r(g) approximate to 1). Cognitive behavioural therapy is a leading evidence-based treatment but has variable outcomes. Currently, there are no strong predictors of outcome. Therapygenetics research aims to identify genetic predictors of prognosis following therapy. We performed genome-wide association meta-analyses of symptoms following cognitive behavioural therapy in adults with anxiety disorders (n = 972), adults with major depressive disorder (n = 832) and children with anxiety disorders (n = 920; meta-analysis n = 2724). We (h(SNP)(2)) and polygenic scoring was used to examine genetic associations between therapy outcomes and psychopathology, personality and estimated the variance in therapy outcomes that could be explained by common genetic variants learning. No single nucleotide polymorphisms were strongly associated with treatment outcomes. No significant estimate of h(SNP)(2) could be obtained, suggesting the heritability of therapy outcome is smaller than our analysis was powered to detect. Polygenic scoring failed to detect genetic overlap between therapy outcome and psychopathology, personality or learning. This study is the largest therapygenetics study to date. Results are consistent with previous, similarly powered genome-wide association studies of complex traits.}, language = {en} } @article{BarthHerrmannTappeetal.2012, author = {Barth, Thomas F. E. and Herrmann, Tobias S. and Tappe, Dennis and Stark, Lorenz and Gr{\"u}ner, Beate and Buttenschoen, Klaus and Hillenbrand, Andreas and Juchems, Markus and Henne-Bruns, Doris and Kern, Petra and Seitz, Hanns M. and M{\"o}ller, Peter and Rausch, Robert L. and Kern, Peter and Deplazes, Peter}, title = {Sensitive and Specific Immunohistochemical Diagnosis of Human Alveolar Echinococcosis with the Monoclonal Antibody Em2G11}, series = {PLoS Neglected Tropical Diseases}, volume = {6}, journal = {PLoS Neglected Tropical Diseases}, number = {10}, doi = {10.1371/journal.pntd.0001877}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135371}, pages = {e1877}, year = {2012}, abstract = {Background: Alveolar echinococcosis (AE) is caused by the metacestode stage of Echinococcus multilocularis. Differential diagnosis with cystic echinococcosis (CE) caused by E. granulosus and AE is challenging. We aimed at improving diagnosis of AE on paraffin sections of infected human tissue by immunohistochemical testing of a specific antibody. Methodology/Principal Findings: We have analysed 96 paraffin archived specimens, including 6 cutting needle biopsies and 3 fine needle aspirates, from patients with suspected AE or CE with the monoclonal antibody (mAb) Em2G11 specific for the Em2 antigen of E. multilocularis metacestodes. In human tissue, staining with mAb Em2G11 is highly specific for E. multilocularis metacestodes while no staining is detected in CE lesions. In addition, the antibody detects small particles of E. multilocularis (spems) of less than 1 mm outside the main lesion in necrotic tissue, liver sinusoids and lymphatic tissue most probably caused by shedding of parasitic material. The conventional histological diagnosis based on haematoxylin and eosin and PAS stainings were in accordance with the immunohistological diagnosis using mAb Em2G11 in 90 of 96 samples. In 6 samples conventional subtype diagnosis of echinococcosis had to be adjusted when revised by immunohistology with mAb Em2G11. Conclusions/Significance: Immunohistochemistry with the mAb Em2G11 is a new, highly specific and sensitive diagnostic tool for AE. The staining of small particles of E. multilocularis (spems) outside the main lesion including immunocompetent tissue, such as lymph nodes, suggests a systemic effect on the host.}, language = {en} } @article{HerrmannAdamNotzetal.2020, author = {Herrmann, Johannes and Adam, Elisabeth Hannah and Notz, Quirin and Helmer, Philipp and Sonntagbauer, Michael and Ungemach-Papenberg, Peter and Sanns, Andreas and Zausig, York and Steinfeldt, Thorsten and Torje, Iuliu and Schmid, Benedikt and Schlesinger, Tobias and Rolfes, Caroline and Reyher, Christian and Kredel, Markus and Stumpner, Jan and Brack, Alexander and Wurmb, Thomas and Gill-Schuster, Daniel and Kranke, Peter and Weismann, Dirk and Klinker, Hartwig and Heuschmann, Peter and R{\"u}cker, Viktoria and Frantz, Stefan and Ertl, Georg and Muellenbach, Ralf Michael and Mutlak, Haitham and Meybohm, Patrick and Zacharowski, Kai and Lotz, Christopher}, title = {COVID-19 Induced Acute Respiratory Distress Syndrome — A Multicenter Observational Study}, series = {Frontiers in Medicine}, volume = {7}, journal = {Frontiers in Medicine}, issn = {2296-858X}, doi = {10.3389/fmed.2020.599533}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219834}, year = {2020}, abstract = {Background: Proportions of patients dying from the coronavirus disease-19 (COVID-19) vary between different countries. We report the characteristics; clinical course and outcome of patients requiring intensive care due to COVID-19 induced acute respiratory distress syndrome (ARDS). Methods: This is a retrospective, observational multicentre study in five German secondary or tertiary care hospitals. All patients consecutively admitted to the intensive care unit (ICU) in any of the participating hospitals between March 12 and May 4, 2020 with a COVID-19 induced ARDS were included. Results: A total of 106 ICU patients were treated for COVID-19 induced ARDS, whereas severe ARDS was present in the majority of cases. Survival of ICU treatment was 65.0\%. Median duration of ICU treatment was 11 days; median duration of mechanical ventilation was 9 days. The majority of ICU treated patients (75.5\%) did not receive any antiviral or anti-inflammatory therapies. Venovenous (vv) ECMO was utilized in 16.3\%. ICU triage with population-level decision making was not necessary at any time. Univariate analysis associated older age, diabetes mellitus or a higher SOFA score on admission with non-survival during ICU stay. Conclusions: A high level of care adhering to standard ARDS treatments lead to a good outcome in critically ill COVID-19 patients.}, language = {en} } @article{ElHelouBiegnerBodeetal.2019, author = {El-Helou, Sabine M. and Biegner, Anika-Kerstin and Bode, Sebastian and Ehl, Stephan R. and Heeg, Maximilian and Maccari, Maria E. and Ritterbusch, Henrike and Speckmann, Carsten and Rusch, Stephan and Scheible, Raphael and Warnatz, Klaus and Atschekzei, Faranaz and Beider, Renata and Ernst, Diana and Gerschmann, Stev and Jablonka, Alexandra and Mielke, Gudrun and Schmidt, Reinhold E. and Sch{\"u}rmann, Gesine and Sogkas, Georgios and Baumann, Ulrich H. and Klemann, Christian and Viemann, Dorothee and Bernuth, Horst von and Kr{\"u}ger, Renate and Hanitsch, Leif G. and Scheibenbogen, Carmen M. and Wittke, Kirsten and Albert, Michael H. and Eichinger, Anna and Hauck, Fabian and Klein, Christoph and Rack-Hoch, Anita and Sollinger, Franz M. and Avila, Anne and Borte, Michael and Borte, Stephan and Fasshauer, Maria and Hauenherm, Anja and Kellner, Nils and M{\"u}ller, Anna H. and {\"U}lzen, Anett and Bader, Peter and Bakhtiar, Shahrzad and Lee, Jae-Yun and Heß, Ursula and Schubert, Ralf and W{\"o}lke, Sandra and Zielen, Stefan and Ghosh, Sujal and Laws, Hans-Juergen and Neubert, Jennifer and Oommen, Prasad T. and H{\"o}nig, Manfred and Schulz, Ansgar and Steinmann, Sandra and Klaus, Schwarz and D{\"u}ckers, Gregor and Lamers, Beate and Langemeyer, Vanessa and Niehues, Tim and Shai, Sonu and Graf, Dagmar and M{\"u}glich, Carmen and Schmalzing, Marc T. and Schwaneck, Eva C. and Tony, Hans-Peter and Dirks, Johannes and Haase, Gabriele and Liese, Johannes G. and Morbach, Henner and Foell, Dirk and Hellige, Antje and Wittkowski, Helmut and Masjosthusmann, Katja and Mohr, Michael and Geberzahn, Linda and Hedrich, Christian M. and M{\"u}ller, Christiane and R{\"o}sen-Wolff, Angela and Roesler, Joachim and Zimmermann, Antje and Behrends, Uta and Rieber, Nikolaus and Schauer, Uwe and Handgretinger, Rupert and Holzer, Ursula and Henes, J{\"o}rg and Kanz, Lothar and Boesecke, Christoph and Rockstroh, J{\"u}rgen K. and Schwarze-Zander, Carolynne and Wasmuth, Jan-Christian and Dilloo, Dagmar and H{\"u}lsmann, Brigitte and Sch{\"o}nberger, Stefan and Schreiber, Stefan and Zeuner, Rainald and Ankermann, Tobias and Bismarck, Philipp von and Huppertz, Hans-Iko and Kaiser-Labusch, Petra and Greil, Johann and Jakoby, Donate and Kulozik, Andreas E. and Metzler, Markus and Naumann-Bartsch, Nora and Sobik, Bettina and Graf, Norbert and Heine, Sabine and Kobbe, Robin and Lehmberg, Kai and M{\"u}ller, Ingo and Herrmann, Friedrich and Horneff, Gerd and Klein, Ariane and Peitz, Joachim and Schmidt, Nadine and Bielack, Stefan and Groß-Wieltsch, Ute and Classen, Carl F. and Klasen, Jessica and Deutz, Peter and Kamitz, Dirk and Lassy, Lisa and Tenbrock, Klaus and Wagner, Norbert and Bernbeck, Benedikt and Brummel, Bastian and Lara-Villacanas, Eusebia and M{\"u}nstermann, Esther and Schneider, Dominik T. and Tietsch, Nadine and Westkemper, Marco and Weiß, Michael and Kramm, Christof and K{\"u}hnle, Ingrid and Kullmann, Silke and Girschick, Hermann and Specker, Christof and Vinnemeier-Laubenthal, Elisabeth and Haenicke, Henriette and Schulz, Claudia and Schweigerer, Lothar and M{\"u}ller, Thomas G. and Stiefel, Martina and Belohradsky, Bernd H. and Soetedjo, Veronika and Kindle, Gerhard and Grimbacher, Bodo}, title = {The German national registry of primary immunodeficiencies (2012-2017)}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2019.01272}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226629}, year = {2019}, abstract = {Introduction: The German PID-NET registry was founded in 2009, serving as the first national registry of patients with primary immunodeficiencies (PID) in Germany. It is part of the European Society for Immunodeficiencies (ESID) registry. The primary purpose of the registry is to gather data on the epidemiology, diagnostic delay, diagnosis, and treatment of PIDs. Methods: Clinical and laboratory data was collected from 2,453 patients from 36 German PID centres in an online registry. Data was analysed with the software Stata® and Excel. Results: The minimum prevalence of PID in Germany is 2.72 per 100,000 inhabitants. Among patients aged 1-25, there was a clear predominance of males. The median age of living patients ranged between 7 and 40 years, depending on the respective PID. Predominantly antibody disorders were the most prevalent group with 57\% of all 2,453 PID patients (including 728 CVID patients). A gene defect was identified in 36\% of patients. Familial cases were observed in 21\% of patients. The age of onset for presenting symptoms ranged from birth to late adulthood (range 0-88 years). Presenting symptoms comprised infections (74\%) and immune dysregulation (22\%). Ninety-three patients were diagnosed without prior clinical symptoms. Regarding the general and clinical diagnostic delay, no PID had undergone a slight decrease within the last decade. However, both, SCID and hyper IgE-syndrome showed a substantial improvement in shortening the time between onset of symptoms and genetic diagnosis. Regarding treatment, 49\% of all patients received immunoglobulin G (IgG) substitution (70\%-subcutaneous; 29\%-intravenous; 1\%-unknown). Three-hundred patients underwent at least one hematopoietic stem cell transplantation (HSCT). Five patients had gene therapy. Conclusion: The German PID-NET registry is a precious tool for physicians, researchers, the pharmaceutical industry, politicians, and ultimately the patients, for whom the outcomes will eventually lead to a more timely diagnosis and better treatment.}, language = {en} } @article{KolominskyRabasWiedmannWeingaertneretal.2015, author = {Kolominsky-Rabas, Peter L. and Wiedmann, Silke and Weing{\"a}rtner, Michael and Liman, Thomas G. and Endres, Matthias and Schwab, Stefan and Buchfelder, Michael and Heuschmann, Peter U.}, title = {Time Trends in Incidence of Pathological and Etiological Stroke Subtypes during 16 Years: The Erlangen Stroke Project}, series = {Neuroepidemiology}, volume = {44}, journal = {Neuroepidemiology}, number = {1}, issn = {0251-5350}, doi = {10.1159/000371353}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196503}, pages = {24-29}, year = {2015}, abstract = {Background: Population-based data, which continuously monitors time trends in stroke epidemiology are limited. We investigated the incidence of pathological and etiological stroke subtypes over a 16 year time period. Methods: Data were collected within the Erlangen Stroke Project (ESPro), a prospective, population-based stroke register in Germany covering a total study population of 105,164 inhabitants (2010). Etiology of ischemic stroke was classified according to the Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria. Results: Between January 1995 and December 2010, 3,243 patients with first-ever stroke were documented. The median age was 75 and 55\% were females. The total stroke incidence decreased over the 16 year study period in men (Incidence Rate Ratio 1995-1996 vs. 2009-2010 (IRR) 0.78; 95\% CI 0.58-0.90) but not in women. Among stroke subtypes, a decrease in ischemic stroke incidence (IRR 0.73; 95\% CI 0.57-0.93) and of large artery atherosclerotic stroke (IRR 0.27; 95\% CI 0.12-0.59) was found in men and an increase of stroke due to small artery occlusion in women (IRR 2.33; 95\% CI 1.39-3.90). Conclusions: Variations in time trends of pathological and etiological stroke subtypes were found between men and women that might be linked to gender differences in the development of major vascular risk factors in the study population.}, language = {en} } @article{WendlerBurmesterSoerensenetal.2014, author = {Wendler, J{\"o}rg and Burmester, Gerd R. and S{\"o}rensen, Helmut and Krause, Andreas and Richter, Constanze and Tony, Hans-Peter and Rubbert-Roth, Andrea and Bartz-Bazzanella, Peter and Wassenberg, Siegfried and Haug-Rost, Iris and D{\"o}rner, Thomas}, title = {Rituximab in patients with rheumatoid arthritis in routine practice (GERINIS): six-year results from a prospective, multicentre, non-interventional study in 2,484 patients}, series = {Arthritis Research \& Therapy}, volume = {16}, journal = {Arthritis Research \& Therapy}, number = {2}, doi = {10.1186/ar4521}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121184}, pages = {R80}, year = {2014}, abstract = {INTRODUCTION: The aim of this study was to evaluate the safety and efficacy of rituximab (RTX) in a large cohort of patients with rheumatoid arthritis in routine care, and to monitor changes in daily practice since the introduction of RTX therapy. METHODS: This was a multicentre, prospective, non-interventional study conducted under routine practice conditions in Germany. Efficacy was evaluated using Disease Activity Score in 28 joints (DAS28) and Health Assessment Questionnaire-Disability Index (HAQ-DI). Safety was assessed by recording adverse drug reactions (ADRs). Physician and patient global efficacy and tolerability assessments were also evaluated. RESULTS: Overall, 2,484 patients (76.7\% female, mean age 56.4 years, mean disease duration 11.7 years) received RTX treatment (22.7\% monotherapy). The total observation period was approximately six-years (median follow-up 14.7 months). RTX treatment led to improvements in DAS28 and HAQ-DI that were sustained over multiple courses. DAS28 improvements positively correlated with higher rheumatoid factor levels up to 50 IU/ml. Response and tolerability were rated good/very good by the majority of physicians and patients. Mean treatment intervals were 10.5 and 6.8 months for the first and last 400 enrolled patients, respectively. Infections were the most frequently reported ADRs (9.1\%; 11.39/100 patient-years); approximately 1\% of patients per course discontinued therapy due to ADRs. CONCLUSIONS: Prolonged RTX treatment in routine care is associated with good efficacy and tolerability, as measured by conventional parameters and by physicians' and patients' global assessments. Rheumatoid factor status served as a distinct and quantitative biomarker of RTX responsiveness. With growing experience, physicians repeated treatments earlier in patients with less severe disease activity.}, language = {en} } @article{SadovnickTraboulseeBernalesetal.2016, author = {Sadovnick, A. Dessa and Traboulsee, Anthony L. and Bernales, Cecily Q. and Ross, Jay P. and Forwell, Amanda L. and Yee, Irene M. and Guillot-Noel, Lena and Fontaine, Bertrand and Cournu-Rebeix, Isabelle and Alcina, Antonio and Fedetz, Maria and Izquierdo, Guillermo and Matesanz, Fuencisla and Hilven, Kelly and Dubois, B{\´e}n{\´e}dicte and Goris, An and Astobiza, Ianire and Alloza, Iraide and Antig{\"u}edad, Alfredo and Vandenbroeck, Koen and Akkad, Denis A. and Aktas, Orhan and Blaschke, Paul and Buttmann, Mathias and Chan, Andrew and Epplen, Joerg T. and Gerdes, Lisa-Ann and Kroner, Antje and Kubisch, Christian and K{\"u}mpfel, Tania and Lohse, Peter and Rieckmann, Peter and Zettl, Uwe K. and Zipp, Frauke and Bertram, Lars and Lill, Christina M. and Fernandez, Oscar and Urbaneja, Patricia and Leyva, Laura and Alvarez-Cerme{\~n}o, Jose Carlos and Arroyo, Rafael and Garagorri, Aroa M. and Garc{\´i}a-Mart{\´i}nez, Angel and Villar, Luisa M. and Urcelay, Elena and Malhotra, Sunny and Montalban, Xavier and Comabella, Manuel and Berger, Thomas and Fazekas, Franz and Reindl, Markus and Schmied, Mascha C. and Zimprich, Alexander and Vilari{\~n}o-G{\"u}ell, Carles}, title = {Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients}, series = {G3: Genes Genomes Genetics}, volume = {6}, journal = {G3: Genes Genomes Genetics}, number = {7}, doi = {10.1534/g3.116.030841}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165405}, pages = {2073-2079}, year = {2016}, abstract = {Multiple sclerosis (MS) is a prevalent neurological disease of complex etiology. Here, we describe the characterization of a multi-incident MS family that nominated a rare missense variant (p.G420D) in plasminogen (PLG) as a putative genetic risk factor for MS. Genotyping of PLG p.G420D (rs139071351) in 2160 MS patients, and 886 controls from Canada, identified 10 additional probands, two sporadic patients and one control with the variant. Segregation in families harboring the rs139071351 variant, identified p.G420D in 26 out of 30 family members diagnosed with MS, 14 unaffected parents, and 12 out of 30 family members not diagnosed with disease. Despite considerably reduced penetrance, linkage analysis supports cosegregation of PLG p.G420D and disease. Genotyping of PLG p.G420D in 14446 patients, and 8797 controls from Canada, France, Spain, Germany, Belgium, and Austria failed to identify significant association with disease (P = 0.117), despite an overall higher prevalence in patients (OR = 1.32; 95\% CI = 0.93-1.87). To assess whether additional rare variants have an effect on MS risk, we sequenced PLG in 293 probands, and genotyped all rare variants in cases and controls. This analysis identified nine rare missense variants, and although three of them were exclusively observed in MS patients, segregation does not support pathogenicity. PLG is a plausible biological candidate for MS owing to its involvement in immune system response, blood-brain barrier permeability, and myelin degradation. Moreover, components of its activation cascade have been shown to present increased activity or expression in MS patients compared to controls; further studies are needed to clarify whether PLG is involved in MS susceptibility.}, language = {en} } @article{GarciaLarsenArthurPottsetal.2017, author = {Garcia-Larsen, Vanessa and Arthur, Rhonda and Potts, James F. and Howarth, Peter H. and Ahlstr{\"o}m, Matti and Haahtela, Tari and Loureiro, Carlos and Bom, Ana Todo and Brożek, Grzegorz and Makowska, Joanna and Kowalski, Marek L. and Thilsing, Trine and Keil, Thomas and Matricardi, Paolo M. and Tor{\´e}n, Kjell and van Zele, Thibaut and Bachert, Claus and Rymarczyk, Barbara and Janson, Christer and Forsberg, Bertil and Niżankowska-Mogilnicka, Ewa and Burney, Peter G. J.}, title = {Is fruit and vegetable intake associated with asthma or chronic rhino-sinusitis in European adults? Results from the Global Allergy and Asthma Network of Excellence (GA\(^2\)LEN) Survey}, series = {Clinical and Translational Allergy}, volume = {7}, journal = {Clinical and Translational Allergy}, doi = {10.1186/s13601-016-0140-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180887}, pages = {9}, year = {2017}, abstract = {Background: Fruits and vegetables are rich in compounds with proposed antioxidant, anti-allergic and anti-inflammatory properties, which could contribute to reduce the prevalence of asthma and allergic diseases. Objective: We investigated the association between asthma, and chronic rhino-sinusitis (CRS) with intake of fruits and vegetables in European adults. Methods: A stratified random sample was drawn from the Global Allergy and Asthma Network of Excellence (GA\(^2\)LEN) screening survey, in which 55,000 adults aged 15-75 answered a questionnaire on respiratory symptoms. Asthma score (derived from self-reported asthma symptoms) and CRS were the outcomes of interest. Dietary intake of 22 subgroups of fruits and vegetables was ascertained using the internationally validated GA\(^2\)LEN Food Frequency Questionnaire. Adjusted associations were examined with negative binomial and multiple regressions. Simes procedure was used to control for multiple testing. Results: A total of 3206 individuals had valid data on asthma and dietary exposures of interest. 22.8\% reported having at least 1 asthma symptom (asthma score ≥1), whilst 19.5\% had CRS. After adjustment for potential confounders, asthma score was negatively associated with intake of dried fruits (β-coefficient -2.34; 95\% confidence interval [CI] -4.09, -0.59), whilst CRS was statistically negatively associated with total intake of fruits (OR 0.73; 95\% CI 0.55, 0.97). Conversely, a positive association was observed between asthma score and alliums vegetables (adjusted β-coefficient 0.23; 95\% CI 0.06, 0.40). None of these associations remained statistically significant after controlling for multiple testing. Conclusion and clinical relevance: There was no consistent evidence for an association of asthma or CRS with fruit and vegetable intake in this representative sample of European adults.}, language = {en} } @article{PrelogHilligardtSchmidtetal.2016, author = {Prelog, Martina and Hilligardt, Deborah and Schmidt, Christian A. and Przybylski, Grzegorz K. and Leierer, Johannes and Almanzar, Giovanni and El Hajj, Nady and Lesch, Klaus-Peter and Arolt, Volker and Zwanzger, Peter and Haaf, Thomas and Domschke, Katharina}, title = {Hypermethylation of FOXP3 Promoter and Premature Aging of the Immune System in Female Patients with Panic Disorder?}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0157930}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179684}, year = {2016}, abstract = {Immunological abnormalities associated with pathological conditions, such as higher infection rates, inflammatory diseases, cancer or cardiovascular events are common in patients with panic disorder. In the present study, T cell receptor excision circles (TRECs), Forkhead-Box-Protein P3 gene (FOXP3) methylation of regulatory T cells (Tregs) and relative telomere lengths (RTLs) were investigated in a total and subsamples of 131 patients with panic disorder as compared to 131 age- and sex-matched healthy controls in order to test for a potential dysfunction and premature aging of the immune system in anxiety disorders. Significantly lower TRECs (p = 0.004) as well as significant hypermethylation of the FOXP3 promoter region (p = 0.005) were observed in female (but not in male) patients with panic disorder as compared to healthy controls. No difference in relative telomere length was discerned between patients and controls, but significantly shorter telomeres in females, smokers and older persons within the patient group. The presently observed reduced TRECs in panic disorder patients and FOXP3 hypermethylation in female patients with panic disorder potentially reflect impaired thymus and immunosuppressive Treg function, which might partly account for the known increased morbidity and mortality of anxiety disorders conferred by e.g. cancer and cardiovascular disorders.}, language = {en} } @article{BonigKuciKucietal.2019, author = {Bonig, Halvard and Ku{\c{c}}i, Zyrafete and Ku{\c{c}}i, Selim and Bakhtiar, Shahrzad and Basu, Oliver and Bug, Gesine and Dennis, Mike and Greil, Johann and Barta, Aniko and K{\´a}llay, Kriszti{\´a}n M. and Lang, Peter and Lucchini, Giovanna and Pol, Raj and Schulz, Ansgar and Sykora, Karl-Walter and Teichert von Luettichau, Irene and Herter-Sprie, Grit and Ashab Uddin, Mohammad and Jenkin, Phil and Alsultan, Abdulrahman and Buechner, Jochen and Stein, Jerry and Kelemen, Agnes and Jarisch, Andrea and Soerensen, Jan and Salzmann-Manrique, Emilia and Hutter, Martin and Sch{\"a}fer, Richard and Seifried, Erhard and Paneesha, Shankara and Novitzky-Basso, Igor and Gefen, Aharon and Nevo, Neta and Beutel, Gernot and Schlegel, Paul-Gerhardt and Klingebiel, Thomas and Bader, Peter}, title = {Children and adults with Refractory acute Graft-versus-Host Disease respond to treatment with the Mesenchymal Stromal cell preparation "MSC-FFM"—Outcome report of 92 patients}, series = {Cells}, volume = {8}, journal = {Cells}, number = {12}, issn = {2073-4409}, doi = {10.3390/cells8121577}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193878}, pages = {1577}, year = {2019}, abstract = {(1) Background: Refractory acute graft-versus-host disease (R-aGvHD) remains a leading cause of death after allogeneic stem cell transplantation. Survival rates of 15\% after four years are currently achieved; deaths are only in part due to aGvHD itself, but mostly due to adverse effects of R-aGvHD treatment with immunosuppressive agents as these predispose patients to opportunistic infections and loss of graft-versus-leukemia surveillance resulting in relapse. Mesenchymal stromal cells (MSC) from different tissues and those generated by various protocols have been proposed as a remedy for R-aGvHD but the enthusiasm raised by initial reports has not been ubiquitously reproduced. (2) Methods: We previously reported on a unique MSC product, which was generated from pooled bone marrow mononuclear cells of multiple third-party donors. The products showed dose-to-dose equipotency and greater immunosuppressive capacity than individually expanded MSCs from the same donors. This product, MSC-FFM, has entered clinical routine in Germany where it is licensed with a national hospital exemption authorization. We previously reported satisfying initial clinical outcomes, which we are now updating. The data were collected in our post-approval pharmacovigilance program, i.e., this is not a clinical study and the data is high-level and non-monitored. (3) Results: Follow-up for 92 recipients of MSC-FFM was reported, 88 with GvHD ≥°III, one-third only steroid-refractory and two-thirds therapy resistant (refractory to steroids plus ≥2 additional lines of treatment). A median of three doses of MSC-FFM was administered without apparent toxicity. Overall response rates were 82\% and 81\% at the first and last evaluation, respectively. At six months, the estimated overall survival was 64\%, while the cumulative incidence of death from underlying disease was 3\%. (4) Conclusions: MSC-FFM promises to be a safe and efficient treatment for severe R-aGvHD.}, language = {en} } @article{BergfeldDasariWerneretal.2017, author = {Bergfeld, Arne and Dasari, Prasad and Werner, Sandra and Hughes, Timothy R. and Song, Wen-Chao and Hortschansky, Peter and Brakhage, Axel A. and H{\"u}nig, Thomas and Zipfel, Peter F. and Beyersdorf, Niklas}, title = {Direct binding of the pH-regulated Protein 1 (Pra1) from Candida albicans inhibits cytokine secretion by mouse CD4\(^{+}\) T cells}, series = {Frontiers in Microbiology}, volume = {8}, journal = {Frontiers in Microbiology}, number = {844}, doi = {10.3389/fmicb.2017.00844}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158274}, year = {2017}, abstract = {Opportunistic infections with the saprophytic yeast Candida albicans are a major cause of morbidity in immunocompromised patients. While the interaction of cells and molecules of innate immunity with C. albicans has been studied to great depth, comparatively little is known about the modulation of adaptive immunity by C. albicans. In particular, direct interaction of proteins secreted by C. albicans with CD4\(^{+}\) T cells has not been studied in detail. In a first screening approach, we identified the pH-regulated antigen 1 (Pra1) as a molecule capable of directly binding to mouse CD4\(^{+}\) T cells in vitro. Binding of Pra1 to the T cell surface was enhanced by extracellular Zn\(^{2+}\) ions which Pra1 is known to scavenge from the host in order to supply the fungus with Zn\(^{2+}\). In vitro stimulation assays using highly purified mouse CD4\(^{+}\) T cells showed that Pra1 increased proliferation of CD4\(^{+}\) T cells in the presence of plate-bound anti-CD3 monoclonal antibody. In contrast, secretion of effector cytokines such as IFNγ and TNF by CD4\(^{+}\) T cells upon anti-CD3/ anti-CD28 mAb as well as cognate antigen stimulation was reduced in the presence of Pra1. By secreting Pra1 C. albicans, thus, directly modulates and partially controls CD4\(^{+}\) T cell responses as shown in our in vitro assays.}, language = {en} } @article{GhirardoNosenkoKreuzwieseretal.2021, author = {Ghirardo, Andrea and Nosenko, Tetyana and Kreuzwieser, J{\"u}rgen and Winkler, J. Barbro and Kruse, J{\"o}rg and Albert, Andreas and Merl-Pham, Juliane and Lux, Thomas and Ache, Peter and Zimmer, Ina and Alfarraj, Saleh and Mayer, Klaus F. X. and Hedrich, Rainer and Rennenberg, Heinz and Schnitzler, J{\"o}rg-Peter}, title = {Protein expression plasticity contributes to heat and drought tolerance of date palm}, series = {Oecologia}, volume = {197}, journal = {Oecologia}, number = {4}, issn = {0029-8549}, doi = {10.1007/s00442-021-04907-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-308075}, pages = {903-919}, year = {2021}, abstract = {Climate change is increasing the frequency and intensity of warming and drought periods around the globe, currently representing a threat to many plant species. Understanding the resistance and resilience of plants to climate change is, therefore, urgently needed. As date palm (Phoenix dactylifera) evolved adaptation mechanisms to a xeric environment and can tolerate large diurnal and seasonal temperature fluctuations, we studied the protein expression changes in leaves, volatile organic compound emissions, and photosynthesis in response to variable growth temperatures and soil water deprivation. Plants were grown under controlled environmental conditions of simulated Saudi Arabian summer and winter climates challenged with drought stress. We show that date palm is able to counteract the harsh conditions of the Arabian Peninsula by adjusting the abundances of proteins related to the photosynthetic machinery, abiotic stress and secondary metabolism. Under summer climate and water deprivation, these adjustments included efficient protein expression response mediated by heat shock proteins and the antioxidant system to counteract reactive oxygen species formation. Proteins related to secondary metabolism were downregulated, except for the P. dactylifera isoprene synthase (PdIspS), which was strongly upregulated in response to summer climate and drought. This study reports, for the first time, the identification and functional characterization of the gene encoding for PdIspS, allowing future analysis of isoprene functions in date palm under extreme environments. Overall, the current study shows that reprogramming of the leaf protein profiles confers the date palm heat- and drought tolerance. We conclude that the protein plasticity of date palm is an important mechanism of molecular adaptation to environmental fluctuations.}, language = {en} } @article{MuellerBrillHagenetal.2012, author = {M{\"u}ller, Joachim and Brill, Stefan and Hagen, Rudolf and Moeltner, Alexander and Brockmeier, Steffi-Johanna and Stark, Thomas and Helbig, Silke and Maurer, Jan and Zahnert, Thomas and Zierhofer, Clemens and Nopp, Peter and Anderson, Ilona}, title = {Clinical Trial Results with the MED-EL Fine Structure Processing Coding Strategy in Experienced Cochlear Implant Users}, series = {ORL}, volume = {74}, journal = {ORL}, number = {4}, issn = {0301-1569}, doi = {10.1159/000337089}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196396}, pages = {185-198}, year = {2012}, abstract = {Objectives: To assess the subjective and objective performance of the new fine structure processing strategy (FSP) compared to the previous generation coding strategies CIS+ and HDCIS. Methods: Forty-six adults with a minimum of 6 months of cochlear implant experience were included. CIS+, HDCIS and FSP were compared in speech perception tests in noise, pitch scaling and questionnaires. The randomized tests were performed acutely (interval 1) and again after 3 months of FSP experience (interval 3). The subjective evaluation included questionnaire 1 at intervals 1 and 3, and questionnaire 2 at interval 2, 1 month after interval 1. Results: Comparison between FSP and CIS+ showed that FSP performed at least as well as CIS+ in all speech perception tests, and outperformed CIS+ in vowel and monosyllabic word discrimination. Comparison between FSP and HDCIS showed that both performed equally well in all speech perception tests. Pitch scaling showed that FSP performed at least as well as HDCIS. With FSP, sound quality was at least as good and often better than with HDCIS. Conclusions: Results indicate that FSP performs better than CIS+ in vowel and monosyllabic word understanding. Subjective evaluation demonstrates strong user preferences for FSP when listening to speech and music.}, language = {en} } @article{VigoritoKuchenbaeckerBeesleyetal.2016, author = {Vigorito, Elena and Kuchenbaecker, Karoline B. and Beesley, Jonathan and Adlard, Julian and Agnarsson, Bjarni A. and Andrulis, Irene L. and Arun, Banu K. and Barjhoux, Laure and Belotti, Muriel and Benitez, Javier and Berger, Andreas and Bojesen, Anders and Bonanni, Bernardo and Brewer, Carole and Caldes, Trinidad and Caligo, Maria A. and Campbell, Ian and Chan, Salina B. and Claes, Kathleen B. M. and Cohn, David E. and Cook, Jackie and Daly, Mary B. and Damiola, Francesca and Davidson, Rosemarie and de Pauw, Antoine and Delnatte, Capucine and Diez, Orland and Domchek, Susan M. and Dumont, Martine and Durda, Katarzyna and Dworniczak, Bernd and Easton, Douglas F. and Eccles, Diana and Ardnor, Christina Edwinsdotter and Eeles, Ros and Ejlertsen, Bent and Ellis, Steve and Evans, D. Gareth and Feliubadalo, Lidia and Fostira, Florentia and Foulkes, William D. and Friedman, Eitan and Frost, Debra and Gaddam, Pragna and Ganz, Patricia A. and Garber, Judy and Garcia-Barberan, Vanesa and Gauthier-Villars, Marion and Gehrig, Andrea and Gerdes, Anne-Marie and Giraud, Sophie and Godwin, Andrew K. and Goldgar, David E. and Hake, Christopher R. and Hansen, Thomas V. O. and Healey, Sue and Hodgson, Shirley and Hogervorst, Frans B. L. and Houdayer, Claude and Hulick, Peter J. and Imyanitov, Evgeny N. and Isaacs, Claudine and Izatt, Louise and Izquierdo, Angel and Jacobs, Lauren and Jakubowska, Anna and Janavicius, Ramunas and Jaworska-Bieniek, Katarzyna and Jensen, Uffe Birk and John, Esther M. and Vijai, Joseph and Karlan, Beth Y. and Kast, Karin and Khan, Sofia and Kwong, Ava and Laitman, Yael and Lester, Jenny and Lesueur, Fabienne and Liljegren, Annelie and Lubinski, Jan and Mai, Phuong L. and Manoukian, Siranoush and Mazoyer, Sylvie and Meindl, Alfons and Mensenkamp, Arjen R. and Montagna, Marco and Nathanson, Katherine L. and Neuhausen, Susan L. and Nevanlinna, Heli and Niederacher, Dieter and Olah, Edith and Olopade, Olufunmilayo I. and Ong, Kai-ren and Osorio, Ana and Park, Sue Kyung and Paulsson-Karlsson, Ylva and Pedersen, Inge Sokilde and Peissel, Bernard and Peterlongo, Paolo and Pfeiler, Georg and Phelan, Catherine M. and Piedmonte, Marion and Poppe, Bruce and Pujana, Miquel Angel and Radice, Paolo and Rennert, Gad and Rodriguez, Gustavo C. and Rookus, Matti A. and Ross, Eric A. and Schmutzler, Rita Katharina and Simard, Jacques and Singer, Christian F. and Slavin, Thomas P. and Soucy, Penny and Southey, Melissa and Steinemann, Doris and Stoppa-Lyonnet, Dominique and Sukiennicki, Grzegorz and Sutter, Christian and Szabo, Csilla I. and Tea, Muy-Kheng and Teixeira, Manuel R. and Teo, Soo-Hwang and Terry, Mary Beth and Thomassen, Mads and Tibiletti, Maria Grazia and Tihomirova, Laima and Tognazzo, Silvia and van Rensburg, Elizabeth J. and Varesco, Liliana and Varon-Mateeva, Raymonda and Vratimos, Athanassios and Weitzel, Jeffrey N. and McGuffog, Lesley and Kirk, Judy and Toland, Amanda Ewart and Hamann, Ute and Lindor, Noralane and Ramus, Susan J. and Greene, Mark H. and Couch, Fergus J. and Offit, Kenneth and Pharoah, Paul D. P. and Chenevix-Trench, Georgia and Antoniou, Antonis C.}, title = {Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {7}, doi = {10.1371/journal.pone.0158801}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166869}, pages = {e0158801}, year = {2016}, abstract = {Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95\%CI: 0.68 to 0.79, p-value 2× 10-16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95\%CI: 0.59 to 0.80, p-value 1.0 × 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.}, language = {en} } @article{MencacciIsaiasReichetal.2014, author = {Mencacci, Niccol{\´o} E. and Isaias, Ioannis U. and Reich, Martin M. and Ganos, Christos and Plagnol, Vincent and Polke, James M. and Bras, Jose and Hersheson, Joshua and Stamelou, Maria and Pittman, Alan M. and Noyce, Alastair J. and Mok, Kin Y. and Opladen, Thomas and Kunstmann, Erdmute and Hodecker, Sybille and M{\"u}nchau, Alexander and Volkmann, Jens and Samnick, Samuel and Sidle, Katie and Nanji, Tina and Sweeney, Mary G. and Houlden, Henry and Batla, Amit and Zecchinelli, Anna L. and Pezzoli, Gianni and Marotta, Giorgio and Lees, Andrew and Alegria, Paulo and Krack, Paul and Cormier-Dequaire, Florence and Lesage, Suzanne and Brice, Alexis and Heutink, Peter and Gasser, Thomas and Lubbe, Steven J. and Morris, Huw R. and Taba, Pille and Koks, Sulev and Majounie, Elisa and Gibbs, J. Raphael and Singleton, Andrew and Hardy, John and Klebe, Stephan and Bhatia, Kailash P. and Wood, Nicholas W.}, title = {Parkinson's disease in GTP cyclohydrolase 1 mutation carriers}, series = {Brain}, volume = {137}, journal = {Brain}, number = {9}, doi = {10.1093/brain/awu179}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121268}, pages = {2480-92}, year = {2014}, abstract = {GTP cyclohydrolase 1, encoded by the GCH1 gene, is an essential enzyme for dopamine production in nigrostriatal cells. Loss-of-function mutations in GCH1 result in severe reduction of dopamine synthesis in nigrostriatal cells and are the most common cause of DOPA-responsive dystonia, a rare disease that classically presents in childhood with generalized dystonia and a dramatic long-lasting response to levodopa. We describe clinical, genetic and nigrostriatal dopaminergic imaging ([(123)I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) tropane single photon computed tomography) findings of four unrelated pedigrees with DOPA-responsive dystonia in which pathogenic GCH1 variants were identified in family members with adult-onset parkinsonism. Dopamine transporter imaging was abnormal in all parkinsonian patients, indicating Parkinson's disease-like nigrostriatal dopaminergic denervation. We subsequently explored the possibility that pathogenic GCH1 variants could contribute to the risk of developing Parkinson's disease, even in the absence of a family history for DOPA-responsive dystonia. The frequency of GCH1 variants was evaluated in whole-exome sequencing data of 1318 cases with Parkinson's disease and 5935 control subjects. Combining cases and controls, we identified a total of 11 different heterozygous GCH1 variants, all at low frequency. This list includes four pathogenic variants previously associated with DOPA-responsive dystonia (Q110X, V204I, K224R and M230I) and seven of undetermined clinical relevance (Q110E, T112A, A120S, D134G, I154V, R198Q and G217V). The frequency of GCH1 variants was significantly higher (Fisher's exact test P-value 0.0001) in cases (10/1318 = 0.75\%) than in controls (6/5935 = 0.1\%; odds ratio 7.5; 95\% confidence interval 2.4-25.3). Our results show that rare GCH1 variants are associated with an increased risk for Parkinson's disease. These findings expand the clinical and biological relevance of GTP cycloydrolase 1 deficiency, suggesting that it not only leads to biochemical striatal dopamine depletion and DOPA-responsive dystonia, but also predisposes to nigrostriatal cell loss. Further insight into GCH1-associated pathogenetic mechanisms will shed light on the role of dopamine metabolism in nigral degeneration and Parkinson's disease.}, language = {en} } @article{MarenholzEsparzaGordilloRueschendorfetal.2015, author = {Marenholz, Ingo and Esparza-Gordillo, Jorge and R{\"u}schendorf, Franz and Bauerfeind, Anja and Strachan, David P. and Spycher, Ben D. and Baurecht, Hansj{\"o}rg and Magaritte-Jeannin, Patricia and S{\"a}{\"a}f, Annika and Kerkhof, Marjan and Ege, Markus and Baltic, Svetlana and Matheson, Melanie C. and Li, Jin and Michel, Sven and Ang, Wei Q. and McArdle, Wendy and Arnold, Andreas and Homuth, Georg and Demenais, Florence and Bouzigon, Emmanuelle and S{\"o}derh{\"a}ll, Cilla and Pershagen, G{\"o}ran and de Jongste, Johan C. and Postma, Dirkje S. and Braun-Fahrl{\"a}nder, Charlotte and Horak, Elisabeth and Ogorodova, Ludmila M. and Puzyrev, Valery P. and Bragina, Elena Yu and Hudson, Thomas J. and Morin, Charles and Duffy, David L. and Marks, Guy B. and Robertson, Colin F. and Montgomery, Grant W. and Musk, Bill and Thompson, Philip J. and Martin, Nicholas G. and James, Alan and Sleiman, Patrick and Toskala, Elina and Rodriguez, Elke and F{\"o}lster-Holst, Regina and Franke, Andre and Lieb, Wolfgang and Gieger, Christian and Heinzmann, Andrea and Rietschel, Ernst and Keil, Thomas and Cichon, Sven and N{\"o}then, Markus M. and Pennel, Craig E. and Sly, Peter D. and Schmidt, Carsten O. and Matanovic, Anja and Schneider, Valentin and Heinig, Matthias and H{\"u}bner, Norbert and Holt, Patrick G. and Lau, Susanne and Kabesch, Michael and Weidinger, Stefan and Hakonarson, Hakon and Ferreira, Manuel A. R. and Laprise, Catherine and Freidin, Maxim B. and Genuneit, Jon and Koppelman, Gerard H. and Mel{\´e}n, Erik and Dizier, Marie-H{\´e}l{\`e}ne and Henderson, A. John and Lee, Young Ae}, title = {Meta-analysis identifies seven susceptibility loci involved in the atopic march}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {8804}, doi = {10.1038/ncomms9804}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139835}, year = {2015}, abstract = {Eczema often precedes the development of asthma in a disease course called the 'atopic march'. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12 populations including 2,428 cases and 17,034 controls. Here we report two novel loci specific for the combined eczema plus asthma phenotype, which are associated with allergic disease for the first time; rs9357733 located in EFHC1 on chromosome 6p12.3 (OR 1.27; P = 2.1 x 10(-8)) and rs993226 between TMTC2 and SLC6A15 on chromosome 12q21.3 (OR 1.58; P = 5.3 x 10(-9)). Additional susceptibility loci identified at genome-wide significance are FLG (1q21.3), IL4/KIF3A (5q31.1), AP5B1/OVOL1 (11q13.1), C11orf30/LRRC32 (11q13.5) and IKZF3 (17q21). We show that predominantly eczema loci increase the risk for the atopic march. Our findings suggest that eczema may play an important role in the development of asthma after eczema.}, language = {en} } @article{WeiseBasseLuesebrinkKleinschnitzetal.2011, author = {Weise, Gesa and Basse-L{\"u}sebrink, Thomas C. and Kleinschnitz, Christoph and Kampf, Thomas and Jakob, Peter M. and Stoll, Guido}, title = {In Vivo Imaging of Stepwise Vessel Occlusion in Cerebral Photothrombosis of Mice by \(^{19}\)F MRI}, series = {PLoS One}, volume = {6}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0028143}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137792}, pages = {e28143}, year = {2011}, abstract = {Background \(^{19}\)F magnetic resonance imaging (MRI) was recently introduced as a promising technique for in vivo cell tracking. In the present study we compared \(^{19}\)F MRI with iron-enhanced MRI in mice with photothrombosis (PT) at 7 Tesla. PT represents a model of focal cerebral ischemia exhibiting acute vessel occlusion and delayed neuroinflammation. Methods/Principal Findings Perfluorocarbons (PFC) or superparamagnetic iron oxide particles (SPIO) were injected intravenously at different time points after photothrombotic infarction. While administration of PFC directly after PT induction led to a strong \(^{19}\)F signal throughout the entire lesion, two hours delayed application resulted in a rim-like \(^{19}\)F signal at the outer edge of the lesion. These findings closely resembled the distribution of signal loss on T2-weighted MRI seen after SPIO injection reflecting intravascular accumulation of iron particles trapped in vessel thrombi as confirmed histologically. By sequential administration of two chemically shifted PFC compounds 0 and 2 hours after illumination the different spatial distribution of the \(^{19}\)F markers (infarct core/rim) could be visualized in the same animal. When PFC were applied at day 6 the fluorine marker was only detected after long acquisition times ex vivo. SPIO-enhanced MRI showed slight signal loss in vivo which was much more prominent ex vivo indicative for neuroinflammation at this late lesion stage. Conclusion Our study shows that vessel occlusion can be followed in vivo by \(^{19}\)F and SPIO-enhanced high-field MRI while in vivo imaging of neuroinflammation remains challenging. The timing of contrast agent application was the major determinant of the underlying processes depicted by both imaging techniques. Importantly, sequential application of different PFC compounds allowed depiction of ongoing vessel occlusion from the core to the margin of the ischemic lesions in a single MRI measurement.}, language = {en} } @article{WeibelBasseLuesebrinkHessetal.2013, author = {Weibel, Stephanie and Basse-Luesebrink, Thomas Christian and Hess, Michael and Hofmann, Elisabeth and Seubert, Carolin and Langbein-Laugwitz, Johanna and Gentschev, Ivaylo and Sturm, Volker J{\"o}rg Friedrich and Ye, Yuxiang and Kampf, Thomas and Jakob, Peter Michael and Szalay, Aladar A.}, title = {Imaging of Intratumoral Inflammation during Oncolytic Virotherapy of Tumors by \(^{19}\)F-Magnetic Resonance Imaging (MRI)}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0056317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130311}, pages = {e56317}, year = {2013}, abstract = {Background Oncolytic virotherapy of tumors is an up-coming, promising therapeutic modality of cancer therapy. Unfortunately, non-invasive techniques to evaluate the inflammatory host response to treatment are rare. Here, we evaluate \(^{19}\)F magnetic resonance imaging (MRI) which enables the non-invasive visualization of inflammatory processes in pathological conditions by the use of perfluorocarbon nanoemulsions (PFC) for monitoring of oncolytic virotherapy. Methodology/Principal Findings The Vaccinia virus strain GLV-1h68 was used as an oncolytic agent for the treatment of different tumor models. Systemic application of PFC emulsions followed by \(^1H\)/\(^{19}\)F MRI of mock-infected and GLV-1h68-infected tumor-bearing mice revealed a significant accumulation of the \(^{19}\)F signal in the tumor rim of virus-treated mice. Histological examination of tumors confirmed a similar spatial distribution of the \(^{19}\)F signal hot spots and \(CD68^+\)-macrophages. Thereby, the \(CD68^+\)-macrophages encapsulate the GFP-positive viral infection foci. In multiple tumor models, we specifically visualized early inflammatory cell recruitment in Vaccinia virus colonized tumors. Furthermore, we documented that the \(^{19}\)F signal correlated with the extent of viral spreading within tumors. Conclusions/Significance These results suggest \(^{19}\)F MRI as a non-invasive methodology to document the tumor-associated host immune response as well as the extent of intratumoral viral replication. Thus, \(^{19}\)F MRI represents a new platform to non-invasively investigate the role of the host immune response for therapeutic outcome of oncolytic virotherapy and individual patient response.}, language = {en} } @article{OsorioMilneKuchenbaeckeretal.2014, author = {Osorio, Ana and Milne, Roger L. and Kuchenbaecker, Karoline and Vaclov{\´a}, Tereza and Pita, Guillermo and Alonso, Rosario and Peterlongo, Paolo and Blanco, Ignacio and de la Hoya, Miguel and Duran, Mercedes and Diez, Orland and Ram{\´o}n y Cajal, Teresa and Konstantopoulou, Irene and Mart{\´i}nez-Bouzas, Christina and Conejero, Raquel Andr{\´e}s and Soucy, Penny and McGuffog, Lesley and Barrowdale, Daniel and Lee, Andrew and Arver, Brita and Rantala, Johanna and Loman, Niklas and Ehrencrona, Hans and Olopade, Olufunmilayo I. and Beattie, Mary S. and Domchek, Susan M. and Nathanson, Katherine and Rebbeck, Timothy R. and Arun, Banu K. and Karlan, Beth Y. and Walsh, Christine and Lester, Jenny and John, Esther M. and Whittemore, Alice S. and Daly, Mary B. and Southey, Melissa and Hopper, John and Terry, Mary B. and Buys, Saundra S. and Janavicius, Ramunas and Dorfling, Cecilia M. and van Rensburg, Elizabeth J. and Steele, Linda and Neuhausen, Susan L. and Ding, Yuan Chun and Hansen, Thomas V. O. and J{\o}nson, Lars and Ejlertsen, Bent and Gerdes, Anne-Marie and Infante, Mar and Herr{\´a}ez, Bel{\´e}n and Moreno, Leticia Thais and Weitzel, Jeffrey N. and Herzog, Josef and Weeman, Kisa and Manoukian, Siranoush and Peissel, Bernard and Zaffaroni, Daniela and Scuvera, Guilietta and Bonanni, Bernardo and Mariette, Frederique and Volorio, Sara and Viel, Alessandra and Varesco, Liliana and Papi, Laura and Ottini, Laura and Tibiletti, Maria Grazia and Radice, Paolo and Yannoukakos, Drakoulis and Garber, Judy and Ellis, Steve and Frost, Debra and Platte, Radka and Fineberg, Elena and Evans, Gareth and Lalloo, Fiona and Izatt, Louise and Eeles, Ros and Adlard, Julian and Davidson, Rosemarie and Cole, Trevor and Eccles, Diana and Cook, Jackie and Hodgson, Shirley and Brewer, Carole and Tischkowitz, Marc and Douglas, Fiona and Porteous, Mary and Side, Lucy and Walker, Lisa and Morrison, Patrick and Donaldson, Alan and Kennedy, John and Foo, Claire and Godwin, Andrew K. and Schmutzler, Rita Katharina and Wappenschmidt, Barbara and Rhiem, Kerstin and Engel, Christoph and Meindl, Alftons and Ditsch, Nina and Arnold, Norbert and Plendl, Hans J{\"o}rg and Niederacher, Dieter and Sutter, Christian and Wang-Gohrke, Shan and Steinemann, Doris and Preisler-Adams, Sabine and Kast, Karin and Varon-Mateeva, Raymonda and Gehrig, Andrea and Stoppa-Lyonnet, Dominique and Sinilnikova, Olga M. and Mazoyer, Sylvie and Damiola, Francesca and Poppe, Bruce and Claes, Kathleen and Piedmonte, Marion and Tucker, Kathy and Backes, Floor and Rodr{\´i}guez, Gustavo and Brewster, Wendy and Wakeley, Katie and Rutherford, Thomas and Cald{\´e}s, Trinidad and Nevanlinna, Heli and Aittom{\"a}ki, Kristiina and Rookus, Matti A. and van Os, Theo A. M. and van der Kolk, Lizet and de Lange, J. L. and Meijers-Heijboer, Hanne E. J. and van der Hout, A. H. and van Asperen, Christi J. and Gom{\´e}z Garcia, Encarna B. and Encarna, B. and Hoogerbrugge, Nicoline and Coll{\´e}e, J. Margriet and van Deurzen, Carolien H. M. and van der Luijt, Rob B. and Devilee, Peter and Olah, Edith and L{\´a}zaro, Conxi and Teul{\´e}, Alex and Men{\´e}ndez, Mireia and Jakubowska, Anna and Cybulski, Cezary and Gronwald, Jecek and Lubinski, Jan and Durda, Katarzyna and Jaworska-Bieniek, Katarzyna and Johannsson, Oskar Th. and Maugard, Christine and Montagna, Marco and Tognazzo, Silvia and Teixeira, Manuel R. and Healey, Sue and Olswold, Curtis and Guidugli, Lucia and Lindor, Noralane and Slager, Susan and Szabo, Csilla I. and Vijai, Joseph and Robson, Mark and Kauff, Noah and Zhang, Liying and Rau-Murthy, Rohini and Fink-Retter, Anneliese and Singer, Christine F. and Rappaport, Christine and Kaulich, Daphne Geschwantler and Pfeiler, Georg and Tea, Muy-Kheng and Berger, Andreas and Phelan, Catherine M. and Greene, Mark H. and Mai, Phuong L. and Lejbkowicz, Flavio and Andrulis, Irene and Mulligan, Anna Marie and Glendon, Gord and Toland, Amanda Ewart and Bojesen, Anders and Pedersen, Inge Sokilde and Sunde, Lone and Thomassen, Mads and Kruse, Torben A. and Jensen, Uffe Birk and Friedman, Eitan and Laitman, Yeal and Shimon, Shanie Paluch and Simard, Jaques and Easton, Douglas F. and Offit, Kenneth and Couch, Fergus J. and Chenevix-Trench, Georgia and Antoniou, Antonis C. and Benitez, Javier}, title = {DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers}, series = {PLOS Genetics}, volume = {4}, journal = {PLOS Genetics}, number = {e1004256}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1004256}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116820}, year = {2014}, abstract = {Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95\% CI (1.03-1.16), p = 2.7x10(-3)) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95\% CI: 1.03-1.21, p = 4.8x10(-3)). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.}, language = {en} } @article{RudelFaulstichBoettcheretal.2013, author = {Rudel, Thomas and Faulstich, Michaela and B{\"o}ttcher, Jan-Peter and Meyer, Thomas F. and Fraunholz, Martin}, title = {Pilus Phase Variation Switches Gonococcal Adherence to Invasion by Caveolin-1-Dependent Host Cell Signaling}, series = {PLoS Pathogens}, journal = {PLoS Pathogens}, doi = {10.1371/journal.ppat.1003373}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96679}, year = {2013}, abstract = {Many pathogenic bacteria cause local infections but occasionally invade into the blood stream, often with fatal outcome. Very little is known about the mechanism underlying the switch from local to invasive infection. In the case of Neisseria gonorrhoeae, phase variable type 4 pili (T4P) stabilize local infection by mediating microcolony formation and inducing anti-invasive signals. Outer membrane porin PorBIA, in contrast, is associated with disseminated infection and facilitates the efficient invasion of gonococci into host cells. Here we demonstrate that loss of pili by natural pilus phase variation is a prerequisite for the transition from local to invasive infection. Unexpectedly, both T4P-mediated inhibition of invasion and PorBIA-triggered invasion utilize membrane rafts and signaling pathways that depend on caveolin-1-Y14 phosphorylation (Cav1-pY14). We identified p85 regulatory subunit of PI3 kinase (PI3K) and phospholipase Cγ1 as new, exclusive and essential interaction partners for Cav1-pY14 in the course of PorBIA-induced invasion. Active PI3K induces the uptake of gonococci via a new invasion pathway involving protein kinase D1. Our data describe a novel route of bacterial entry into epithelial cells and offer the first mechanistic insight into the switch from local to invasive gonococcal infection.}, language = {en} } @article{HebestreitZeidlerSchippersetal.2022, author = {Hebestreit, Helge and Zeidler, Cornelia and Schippers, Christopher and de Zwaan, Martina and Deckert, J{\"u}rgen and Heuschmann, Peter and Krauth, Christian and Bullinger, Monika and Berger, Alexandra and Berneburg, Mark and Brandstetter, Lilly and Deibele, Anna and Dieris-Hirche, Jan and Graessner, Holm and G{\"u}ndel, Harald and Herpertz, Stephan and Heuft, Gereon and Lapstich, Anne-Marie and L{\"u}cke, Thomas and Maisch, Tim and Mundlos, Christine and Petermann-Meyer, Andrea and M{\"u}ller, Susanne and Ott, Stephan and Pfister, Lisa and Quitmann, Julia and Romanos, Marcel and Rutsch, Frank and Schaubert, Kristina and Schubert, Katharina and Schulz, J{\"o}rg B. and Schweiger, Susann and T{\"u}scher, Oliver and Ungeth{\"u}m, Kathrin and Wagner, Thomas O. F. and Haas, Kirsten}, title = {Dual guidance structure for evaluation of patients with unclear diagnosis in centers for rare diseases (ZSE-DUO): study protocol for a controlled multi-center cohort study}, series = {Orphanet Journal of Rare Diseases}, volume = {17}, journal = {Orphanet Journal of Rare Diseases}, number = {1}, doi = {10.1186/s13023-022-02176-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300440}, year = {2022}, abstract = {Background In individuals suffering from a rare disease the diagnostic process and the confirmation of a final diagnosis often extends over many years. Factors contributing to delayed diagnosis include health care professionals' limited knowledge of rare diseases and frequent (co-)occurrence of mental disorders that may complicate and delay the diagnostic process. The ZSE-DUO study aims to assess the benefits of a combination of a physician focusing on somatic aspects with a mental health expert working side by side as a tandem in the diagnostic process. Study design This multi-center, prospective controlled study has a two-phase cohort design. Methods Two cohorts of 682 patients each are sequentially recruited from 11 university-based German Centers for Rare Diseases (CRD): the standard care cohort (control, somatic expertise only) and the innovative care cohort (experimental, combined somatic and mental health expertise). Individuals aged 12 years and older presenting with symptoms and signs which are not explained by current diagnoses will be included. Data will be collected prior to the first visit to the CRD's outpatient clinic (T0), at the first visit (T1) and 12 months thereafter (T2). Outcomes Primary outcome is the percentage of patients with one or more confirmed diagnoses covering the symptomatic spectrum presented. Sample size is calculated to detect a 10 percent increase from 30\% in standard care to 40\% in the innovative dual expert cohort. Secondary outcomes are (a) time to diagnosis/diagnoses explaining the symptomatology; (b) proportion of patients successfully referred from CRD to standard care; (c) costs of diagnosis including incremental cost effectiveness ratios; (d) predictive value of screening instruments administered at T0 to identify patients with mental disorders; (e) patients' quality of life and evaluation of care; and f) physicians' satisfaction with the innovative care approach. Conclusions This is the first multi-center study to investigate the effects of a mental health specialist working in tandem with a somatic expert physician in CRDs. If this innovative approach proves successful, it will be made available on a larger scale nationally and promoted internationally. In the best case, ZSE-DUO can significantly shorten the time to diagnosis for a suspected rare disease.}, language = {en} } @article{BleinBardelDanjeanetal.2015, author = {Blein, Sophie and Bardel, Claire and Danjean, Vincent and McGuffog, Lesley and Healay, Sue and Barrowdale, Daniel and Lee, Andrew and Dennis, Joe and Kuchenbaecker, Karoline B. and Soucy, Penny and Terry, Mary Beth and Chung, Wendy K. and Goldgar, David E. and Buys, Saundra S. and Janavicius, Ramunas and Tihomirova, Laima and Tung, Nadine and Dorfling, Cecilia M. and van Rensburg, Elizabeth J. and Neuhausen, Susan L. and Ding, Yuan Chun and Gerdes, Anne-Marie and Ejlertsen, Bent and Nielsen, Finn C. and Hansen, Thomas V. O. and Osorio, Ana and Benitez, Javier and Andreas Conejero, Raquel and Segota, Ena and Weitzel, Jeffrey N. and Thelander, Margo and Peterlongo, Paolo and Radice, Paolo and Pensotti, Valeria and Dolcetti, Riccardo and Bonanni, Bernardo and Peissel, Bernard and Zaffaroni, Daniela and Scuvera, Giulietta and Manoukian, Siranoush and Varesco, Liliana and Capone, Gabriele L. and Papi, Laura and Ottini, Laura and Yannoukakos, Drakoulis and Konstantopoulou, Irene and Garber, Judy and Hamann, Ute and Donaldson, Alan and Brady, Angela and Brewer, Carole and Foo, Claire and Evans, D. Gareth and Frost, Debra and Eccles, Diana and Douglas, Fiona and Cook, Jackie and Adlard, Julian and Barwell, Julian and Walker, Lisa and Izatt, Louise and Side, Lucy E. and Kennedy, M. John and Tischkowitz, Marc and Rogers, Mark T. and Porteous, Mary E. and Morrison, Patrick J. and Platte, Radka and Eeles, Ros and Davidson, Rosemarie and Hodgson, Shirley and Cole, Trevor and Godwin, Andrew K and Isaacs, Claudine and Claes, Kathleen and De Leeneer, Kim and Meindl, Alfons and Gehrig, Andrea and Wappenschmidt, Barbara and Sutter, Christian and Engel, Christoph and Niederacher, Dieter and Steinemann, Doris and Plendl, Hansjoerg and Kast, Karin and Rhiem, Kerstin and Ditsch, Nina and Arnold, Norbert and Varon-Mateeva, Raymonda and Schmutzler, Rita K. and Preisler-Adams, Sabine and Markov, Nadja Bogdanova and Wang-Gohrke, Shan and de Pauw, Antoine and Lefol, Cedrick and Lasset, Christine and Leroux, Dominique and Rouleau, Etienne and Damiola, Francesca and Dreyfus, Helene and Barjhoux, Laure and Golmard, Lisa and Uhrhammer, Nancy and Bonadona, Valerie and Sornin, Valerie and Bignon, Yves-Jean and Carter, Jonathan and Van Le, Linda and Piedmonte, Marion and DiSilvestro, Paul A. and de la Hoya, Miguel and Caldes, Trinidad and Nevanlinna, Heli and Aittom{\"a}ki, Kristiina and Jager, Agnes and van den Ouweland, Ans M. W. and Kets, Carolien M. and Aalfs, Cora M. and van Leeuwen, Flora E. and Hogervorst, Frans B. L. and Meijers-Heijboer, Hanne E. J. and Oosterwijk, Jan C. and van Roozendaal, Kees E. P. and Rookus, Matti A. and Devilee, Peter and van der Luijt, Rob B. and Olah, Edith and Diez, Orland and Teule, Alex and Lazaro, Conxi and Blanco, Ignacio and Del Valle, Jesus and Jakubowska, Anna and Sukiennicki, Grzegorz and Gronwald, Jacek and Spurdle, Amanda B. and Foulkes, William and Olswold, Curtis and Lindor, Noralene M. and Pankratz, Vernon S. and Szabo, Csilla I. and Lincoln, Anne and Jacobs, Lauren and Corines, Marina and Robson, Mark and Vijai, Joseph and Berger, Andreas and Fink-Retter, Anneliese and Singer, Christian F. and Rappaport, Christine and Geschwantler Kaulich, Daphne and Pfeiler, Georg and Tea, Muy-Kheng and Greene, Mark H. and Mai, Phuong L. and Rennert, Gad and Imyanitov, Evgeny N. and Mulligan, Anna Marie and Glendon, Gord and Andrulis, Irene L. and Tchatchou, Andrine and Toland, Amanda Ewart and Pedersen, Inge Sokilde and Thomassen, Mads and Kruse, Torben A. and Jensen, Uffe Birk and Caligo, Maria A. and Friedman, Eitan and Zidan, Jamal and Laitman, Yael and Lindblom, Annika and Melin, Beatrice and Arver, Brita and Loman, Niklas and Rosenquist, Richard and Olopade, Olufunmilayo I. and Nussbaum, Robert L. and Ramus, Susan J. and Nathanson, Katherine L. and Domchek, Susan M. and Rebbeck, Timothy R. and Arun, Banu K. and Mitchell, Gillian and Karlan, Bethy Y. and Lester, Jenny and Orsulic, Sandra and Stoppa-Lyonnet, Dominique and Thomas, Gilles and Simard, Jacques and Couch, Fergus J. and Offit, Kenenth and Easton, Douglas F. and Chenevix-Trench, Georgia and Antoniou, Antonis C. and Mazoyer, Sylvie and Phelan, Catherine M. and Sinilnikova, Olga M. and Cox, David G.}, title = {An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers}, series = {Breast Cancer Research}, volume = {17}, journal = {Breast Cancer Research}, number = {61}, doi = {10.1186/s13058-015-0567-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145458}, year = {2015}, abstract = {Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95\% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95\% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.}, language = {en} } @article{WillekeJansonZinketal.2021, author = {Willeke, Kristina and Janson, Patrick and Zink, Katharina and Stupp, Carolin and Kittel-Schneider, Sarah and Bergh{\"o}fer, Anne and Ewert, Thomas and King, Ryan and Heuschmann, Peter U. and Zapf, Andreas and Wildner, Manfred and Keil, Thomas}, title = {Occurrence of mental illness and mental health risks among the self-employed: a systematic review}, series = {International Journal of Environmental Research and Public Health}, volume = {18}, journal = {International Journal of Environmental Research and Public Health}, number = {16}, issn = {1660-4601}, doi = {10.3390/ijerph18168617}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245085}, year = {2021}, abstract = {We aimed to systematically identify and evaluate all studies of good quality that compared the occurrence of mental disorders in the self-employed versus employees. Adhering to the Cochrane guidelines, we conducted a systematic review and searched three major medical databases (MEDLINE, Web of Science, Embase), complemented by hand search. We included 26 (three longitudinal and 23 cross-sectional) population-based studies of good quality (using a validated quality assessment tool), with data from 3,128,877 participants in total. The longest of these studies, a Swedish national register evaluation with 25 years follow-up, showed a higher incidence of mental illness among the self-employed compared to white-collar workers, but a lower incidence compared to blue-collar workers. In the second longitudinal study from Sweden the self-employed had a lower incidence of mental illness compared to both blue- and white-collar workers over 15 years, whereas the third longitudinal study (South Korea) did not find a difference regarding the incidence of depressive symptoms over 6 years. Results from the cross-sectional studies showed associations between self-employment and poor general mental health and stress, but were inconsistent regarding other mental outcomes. Most studies from South Korea found a higher prevalence of mental disorders among the self-employed compared to employees, whereas the results of cross-sectional studies from outside Asia were less consistent. In conclusion, we found evidence from population-based studies for a link between self-employment and increased risk of mental illness. Further longitudinal studies are needed examining the potential risk for the development of mental disorders in specific subtypes of the self-employed.}, language = {en} } @article{GoebelPankratzAsaridouetal.2016, author = {G{\"o}bel, Kerstin and Pankratz, Susann and Asaridou, Chloi-Magdalini and Herrmann, Alexander M. and Bittner, Stefan and Merker, Monika and Ruck, Tobias and Glumm, Sarah and Langhauser, Friederike and Kraft, Peter and Krug, Thorsten F. and Breuer, Johanna and Herold, Martin and Gross, Catharina C. and Beckmann, Denise and Korb-Pap, Adelheid and Schuhmann, Michael K. and Kuerten, Stefanie and Mitroulis, Ioannis and Ruppert, Clemens and Nolte, Marc W. and Panousis, Con and Klotz, Luisa and Kehrel, Beate and Korn, Thomas and Langer, Harald F. and Pap, Thomas and Nieswandt, Bernhard and Wiendl, Heinz and Chavakis, Triantafyllos and Kleinschnitz, Christoph and Meuth, Sven G.}, title = {Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, number = {11626}, doi = {10.1038/ncomms11626}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165503}, year = {2016}, abstract = {Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein-kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders.}, language = {en} } @article{GrafMondorfKnopetal.2019, author = {Graf, Christiana and Mondorf, Antonia and Knop, Viola and Peiffer, Kai-Henrik and Dietz, Julia and Friess, Julia and Wedemeyer, Heiner and Buggisch, Peter and Mauss, Stefan and Berg, Thomas and Rausch, Michael and Sprinzl, Martin and Klinker, Hartwig and Hinrichsen, Holger and Bronowicki, Jean-Pierre and Haag, Sebastian and H{\"u}ppe, Dietrich and Lutz, Thomas and Poynard, Thierry and Zeuzem, Stefan and Friedrich-Rust, Mireen and Sarrazin, Christoph and Vermehren, Johannes}, title = {Evaluation of point shear wave elastography using acoustic radiation force impulse imaging for longitudinal fibrosis assessment in patients with HBeAg-Negative HBV infection}, series = {Journal of Clinical Medicine}, volume = {8}, journal = {Journal of Clinical Medicine}, number = {12}, issn = {2077-0383}, doi = {10.3390/jcm8122101}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193916}, year = {2019}, abstract = {Background: Accurate assessment of hepatic fibrosis in patients with chronic HBeAg-negative Hepatitis B is of crucial importance not only to predict the long-term clinical course, but also to evaluate antiviral therapy indication. The aim of this study was to prospectively assess the utility of point shear wave elastography (pSWE) for longitudinal non-invasive fibrosis assessment in a large cohort of untreated patients with chronic HBeAg-negative hepatitis B virus (HBV) infection. Methods: 407 consecutive patients with HBeAg-negative HBV infection who underwent pSWE, transient elastography (TE) as well as laboratory fibrosis markers, including fibrosis index based on four factors (FIB-4), aspartate to platelet ratio index (APRI) and FibroTest, on the same day were prospectively followed up for six years. Patients were classified into one of the three groups: inactive carriers (IC; HBV-DNA <2000 IU/mL and ALT <40 U/L); grey zone group 1 (GZ-1; HBV DNA <2000 IU/mL and ALT >40 U/L); grey zone group 2 (GZ-2; HBV-DNA >2000 IU/mL and ALT <40 U/L). Results: pSWE results were significantly correlated with TE (r = 0.29, p < 0.001) and APRI (r = 0.17; p = 0.005). Median pSWE values did not differ between IC, GZ-1 and GZ-2 patients (p = 0.82, p = 0.17, p = 0.34). During six years of follow-up, median pSWE and TE values did not differ significantly over time (TE: p = 0.27; pSWE: p = 0.05). Conclusion: Our data indicate that pSWE could be useful for non-invasive fibrosis assessment and follow-up in patients with HBeAg-negative chronic HBV infection.}, language = {en} } @article{PostemaHoogmanAmbrosinoetal.2021, author = {Postema, Merel C. and Hoogman, Martine and Ambrosino, Sara and Asherson, Philip and Banaschewski, Tobias and Bandeira, Cibele E. and Baranov, Alexandr and Bau, Claiton H.D. and Baumeister, Sarah and Baur-Streubel, Ramona and Bellgrove, Mark A. and Biederman, Joseph and Bralten, Janita and Brandeis, Daniel and Brem, Silvia and Buitelaar, Jan K. and Busatto, Geraldo F. and Castellanos, Francisco X. and Cercignani, Mara and Chaim-Avancini, Tiffany M. and Chantiluke, Kaylita C. and Christakou, Anastasia and Coghill, David and Conzelmann, Annette and Cubillo, Ana I. and Cupertino, Renata B. and de Zeeuw, Patrick and Doyle, Alysa E. and Durston, Sarah and Earl, Eric A. and Epstein, Jeffery N. and Ethofer, Thomas and Fair, Damien A. and Fallgatter, Andreas J. and Faraone, Stephen V. and Frodl, Thomas and Gabel, Matt C. and Gogberashvili, Tinatin and Grevet, Eugenio H. and Haavik, Jan and Harrison, Neil A. and Hartman, Catharina A. and Heslenfeld, Dirk J. and Hoekstra, Pieter J. and Hohmann, Sarah and H{\o}vik, Marie F. and Jernigan, Terry L. and Kardatzki, Bernd and Karkashadze, Georgii and Kelly, Clare and Kohls, Gregor and Konrad, Kerstin and Kuntsi, Jonna and Lazaro, Luisa and Lera-Miguel, Sara and Lesch, Klaus-Peter and Louza, Mario R. and Lundervold, Astri J. and Malpas, Charles B and Mattos, Paulo and McCarthy, Hazel and Namazova-Baranova, Leyla and Nicolau, Rosa and Nigg, Joel T. and Novotny, Stephanie E. and Oberwelland Weiss, Eileen and O'Gorman Tuura, Ruth L. and Oosterlaan, Jaap and Oranje, Bob and Paloyelis, Yannis and Pauli, Paul and Picon, Felipe A. and Plessen, Kerstin J. and Ramos-Quiroga, J. Antoni and Reif, Andreas and Reneman, Liesbeth and Rosa, Pedro G.P. and Rubia, Katya and Schrantee, Anouk and Schweren, Lizanne J.S. and Seitz, Jochen and Shaw, Philip and Silk, Tim J. and Skokauskas, Norbert and Soliva Vila, Juan C. and Stevens, Michael C. and Sudre, Gustavo and Tamm, Leanne and Tovar-Moll, Fernanda and van Erp, Theo G.M. and Vance, Alasdair and Vilarroya, Oscar and Vives-Gilabert, Yolanda and von Polier, Georg G. and Walitza, Susanne and Yoncheva, Yuliya N. and Zanetti, Marcus V. and Ziegler, Georg C. and Glahn, David C. and Jahanshad, Neda and Medland, Sarah E. and Thompson, Paul M. and Fisher, Simon E. and Franke, Barbara and Francks, Clyde}, title = {Analysis of structural brain asymmetries in attention-deficit/hyperactivity disorder in 39 datasets}, series = {Journal of Child Psychology and Psychiatry}, volume = {62}, journal = {Journal of Child Psychology and Psychiatry}, number = {10}, doi = {10.1111/jcpp.13396}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239968}, pages = {1202 -- 1219}, year = {2021}, abstract = {Objective Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. Methods We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. Results There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen's d from -0.18 to 0.18) and would not survive study-wide correction for multiple testing. Conclusion Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait.}, language = {en} } @article{BreuerMattheisenFranketal.2018, author = {Breuer, Ren{\´e} and Mattheisen, Manuel and Frank, Josef and Krumm, Bertram and Treutlein, Jens and Kassem, Layla and Strohmaier, Jana and Herms, Stefan and M{\"u}hleisen, Thomas W. and Degenhardt, Franziska and Cichon, Sven and N{\"o}then, Markus M. and Karypis, George and Kelsoe, John and Greenwood, Tiffany and Nievergelt, Caroline and Shilling, Paul and Shekhtman, Tatyana and Edenberg, Howard and Craig, David and Szelinger, Szabolcs and Nurnberger, John and Gershon, Elliot and Alliey-Rodriguez, Ney and Zandi, Peter and Goes, Fernando and Schork, Nicholas and Smith, Erin and Koller, Daniel and Zhang, Peng and Badner, Judith and Berrettini, Wade and Bloss, Cinnamon and Byerley, William and Coryell, William and Foroud, Tatiana and Guo, Yirin and Hipolito, Maria and Keating, Brendan and Lawson, William and Liu, Chunyu and Mahon, Pamela and McInnis, Melvin and Murray, Sarah and Nwulia, Evaristus and Potash, James and Rice, John and Scheftner, William and Z{\"o}llner, Sebastian and McMahon, Francis J. and Rietschel, Marcella and Schulze, Thomas G.}, title = {Detecting significant genotype-phenotype association rules in bipolar disorder: market research meets complex genetics}, series = {International Journal of Bipolar Disorders}, volume = {6}, journal = {International Journal of Bipolar Disorders}, doi = {10.1186/s40345-018-0132-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220509}, year = {2018}, abstract = {Background Disentangling the etiology of common, complex diseases is a major challenge in genetic research. For bipolar disorder (BD), several genome-wide association studies (GWAS) have been performed. Similar to other complex disorders, major breakthroughs in explaining the high heritability of BD through GWAS have remained elusive. To overcome this dilemma, genetic research into BD, has embraced a variety of strategies such as the formation of large consortia to increase sample size and sequencing approaches. Here we advocate a complementary approach making use of already existing GWAS data: a novel data mining procedure to identify yet undetected genotype-phenotype relationships. We adapted association rule mining, a data mining technique traditionally used in retail market research, to identify frequent and characteristic genotype patterns showing strong associations to phenotype clusters. We applied this strategy to three independent GWAS datasets from 2835 phenotypically characterized patients with BD. In a discovery step, 20,882 candidate association rules were extracted. Results Two of these rules—one associated with eating disorder and the other with anxiety—remained significant in an independent dataset after robust correction for multiple testing. Both showed considerable effect sizes (odds ratio ~ 3.4 and 3.0, respectively) and support previously reported molecular biological findings. Conclusion Our approach detected novel specific genotype-phenotype relationships in BD that were missed by standard analyses like GWAS. While we developed and applied our method within the context of BD gene discovery, it may facilitate identifying highly specific genotype-phenotype relationships in subsets of genome-wide data sets of other complex phenotype with similar epidemiological properties and challenges to gene discovery efforts.}, language = {en} } @article{GottschalkRichterZiegleretal.2019, author = {Gottschalk, Michael G. and Richter, Jan and Ziegler, Christiane and Schiele, Miriam A. and Mann, Julia and Geiger, Maximilian J. and Schartner, Christoph and Homola, Gy{\"o}rgy A. and Alpers, Georg W. and B{\"u}chel, Christian and Fehm, Lydia and Fydrich, Thomas and Gerlach, Alexander L. and Gloster, Andrew T. and Helbig-Lang, Sylvia and Kalisch, Raffael and Kircher, Tilo and Lang, Thomas and Lonsdorf, Tina B. and Pan{\´e}-Farr{\´e}, Christiane A. and Str{\"o}hle, Andreas and Weber, Heike and Zwanzger, Peter and Arolt, Volker and Romanos, Marcel and Wittchen, Hans-Ulrich and Hamm, Alfons and Pauli, Paul and Reif, Andreas and Deckert, J{\"u}rgen and Neufang, Susanne and H{\"o}fler, Michael and Domschke, Katharina}, title = {Orexin in the anxiety spectrum: association of a HCRTR1 polymorphism with panic disorder/agoraphobia, CBT treatment response and fear-related intermediate phenotypes}, series = {Translational Psychiatry}, volume = {9}, journal = {Translational Psychiatry}, doi = {10.1038/s41398-019-0415-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227479}, year = {2019}, abstract = {Preclinical studies point to a pivotal role of the orexin 1 (OX1) receptor in arousal and fear learning and therefore suggest the HCRTR1 gene as a prime candidate in panic disorder (PD) with/without agoraphobia (AG), PD/AG treatment response, and PD/AG-related intermediate phenotypes. Here, a multilevel approach was applied to test the non-synonymous HCRTR1 C/T Ile408Val gene variant (rs2271933) for association with PD/AG in two independent case-control samples (total n = 613 cases, 1839 healthy subjects), as an outcome predictor of a six-weeks exposure-based cognitive behavioral therapy (CBT) in PD/AG patients (n = 189), as well as with respect to agoraphobic cognitions (ACQ) (n = 483 patients, n = 2382 healthy subjects), fMRI alerting network activation in healthy subjects (n = 94), and a behavioral avoidance task in PD/AG pre- and post-CBT (n = 271). The HCRTR1 rs2271933 T allele was associated with PD/AG in both samples independently, and in their meta-analysis (p = 4.2 × 10-7), particularly in the female subsample (p = 9.8 × 10-9). T allele carriers displayed a significantly poorer CBT outcome (e.g., Hamilton anxiety rating scale: p = 7.5 × 10-4). The T allele count was linked to higher ACQ sores in PD/AG and healthy subjects, decreased inferior frontal gyrus and increased locus coeruleus activation in the alerting network. Finally, the T allele count was associated with increased pre-CBT exposure avoidance and autonomic arousal as well as decreased post-CBT improvement. In sum, the present results provide converging evidence for an involvement of HCRTR1 gene variation in the etiology of PD/AG and PD/AG-related traits as well as treatment response to CBT, supporting future therapeutic approaches targeting the orexin-related arousal system.}, language = {en} } @article{AlmanzarKleinSchmalzingetal.2016, author = {Almanzar, Giovanni and Klein, Matthias and Schmalzing, Marc and Hilligardt, Deborah and El Hajj, Nady and Kneitz, Hermann and Wild, Vanessa and Rosenwald, Andreas and Benoit, Sandrine and Hamm, Henning and Tony, Hans-Peter and Haaf, Thomas and Goebeler, Matthias and Prelog, Martina}, title = {Disease Manifestation and Inflammatory Activity as Modulators of Th17/Treg Balance and RORC/FoxP3 Methylation in Systemic Sclerosis}, series = {International Archives of Allergy and Immunology}, volume = {171}, journal = {International Archives of Allergy and Immunology}, number = {2}, issn = {1018-2438}, doi = {10.1159/000450949}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196577}, pages = {141-154}, year = {2016}, abstract = {Background: There is much evidence that T cells are strongly involved in the pathogenesis of localized and systemic forms of scleroderma (SSc). A dysbalance between FoxP3+ regulatory CD4+ T cells (Tregs) and inflammatory T-helper (Th) 17 cells has been suggested. Methods: The study aimed (1) to investigate the phenotypical and functional characteristics of Th17 and Tregs in SSc patients depending on disease manifestation (limited vs. diffuse cutaneous SSc, dcSSc) and activity, and (2) the transcriptional level and methylation status of Th17- and Treg-specific transcription factors. Results: There was a concurrent accumulation of circulating peripheral IL-17-producing CCR6+ Th cells and FoxP3+ Tregs in patients with dcSSc. At the transcriptional level, Th17- and Treg-associated transcription factors were elevated in SSc. A strong association with high circulating Th17 and Tregs was seen with early, active, and severe disease presentation. However, a diminished suppressive function on autologous lymphocytes was found in SSc-derived Tregs. Significant relative hypermethylation was seen at the gene level for RORC1 and RORC2 in SSc, particularly in patients with high inflammatory activity. Conclusions: Besides the high transcriptional activity of T cells, attributed to Treg or Th17 phenotype, in active SSc disease, Tregs may be insufficient to produce high amounts of IL-10 or to control proliferative activity of effector T cells in SSc. Our results suggest a high plasticity of Tregs strongly associated with the Th17 phenotype. Future directions may focus on enhancing Treg functions and stabilization of the Treg phenotype.}, language = {en} } @article{HopfnerSchormairKnaufetal.2011, author = {Hopfner, Franziska and Schormair, Barbara and Knauf, Franziska and Berthele, Achim and T{\"o}lle, Thomas R. and Baron, Ralf and Maier, Christoph and Treede, Rolf-Detlef and Binder, Andreas and Sommer, Claudia and Maih{\"o}fner, Christian and Kunz, Wolfram and Zimprich, Friedrich and Heemann, Uwe and Pfeufer, Arne and N{\"a}bauer, Michael and K{\"a}{\"a}b, Stefan and Nowak, Barbara and Gieger, Christian and Lichtner, Peter and Trenkwalder, Claudia and Oexle, Konrad and Winkelmann, Juliane}, title = {Novel SCARB2 mutation in Action Myoclonus-Renal Failure syndrome and evaluation of SCARB2 mutations in isolated AMRF features}, series = {BMC Neurology}, volume = {11}, journal = {BMC Neurology}, number = {134}, doi = {10.1186/1471-2377-11-134}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141209}, pages = {1-8}, year = {2011}, abstract = {Background: Action myoclonus-renal failure syndrome is a hereditary form of progressive myoclonus epilepsy associated with renal failure. It is considered to be an autosomal-recessive disease related to loss-of-function mutations in SCARB2. We studied a German AMRF family, additionally showing signs of demyelinating polyneuropathy and dilated cardiomyopathy. To test the hypothesis whether isolated appearance of individual AMRF syndrome features could be related to heterozygote SCARB2 mutations, we screened for SCARB2 mutations in unrelated patients showing isolated AMRF features. Methods: In the AMRF family all exons of SCARB2 were analyzed by Sanger sequencing. The mutation screening of unrelated patients with isolated AMRF features affected by either epilepsy (n = 103, progressive myoclonus epilepsy or generalized epilepsy), demyelinating polyneuropathy (n = 103), renal failure (n = 192) or dilated cardiomyopathy (n = 85) was performed as high resolution melting curve analysis of the SCARB2 exons. Results: A novel homozygous 1 bp deletion (c.111delC) in SCARB2 was found by sequencing three affected homozygous siblings of the affected family. A heterozygous sister showed generalized seizures and reduction of nerve conduction velocity in her legs. No mutations were found in the epilepsy, renal failure or dilated cardiomyopathy samples. In the polyneuropathy sample two individuals with demyelinating disease were found to be carriers of a SCARB2 frameshift mutation (c.666delCCTTA). Conclusions: Our findings indicate that demyelinating polyneuropathy and dilated cardiomyopathy are part of the action myoclonus-renal failure syndrome. Moreover, they raise the possibility that in rare cases heterozygous SCARB2 mutations may be associated with PNP features.}, language = {en} } @article{HillStritzkerScadengetal.2011, author = {Hill, Philip J. and Stritzker, Jochen and Scadeng, Miriam and Geissinger, Ulrike and Haddad, Daniel and Basse-L{\"u}sebrink, Thomas C. and Gbureck, Uwe and Jakob, Peter and Szalay, Aladar A.}, title = {Magnetic Resonance Imaging of Tumors Colonized with Bacterial Ferritin-Expressing \(Escherichia\) \(coli\)}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0025409}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140920}, pages = {e25409}, year = {2011}, abstract = {Background: Recent studies have shown that human ferritin can be used as a reporter of gene expression for magnetic resonance imaging (MRI). Bacteria also encode three classes of ferritin-type molecules with iron accumulation properties. Methods and Findings: Here, we investigated whether these bacterial ferritins can also be used as MRI reporter genes and which of the bacterial ferritins is the most suitable reporter. Bacterial ferritins were overexpressed in probiotic E. coli Nissle 1917. Cultures of these bacteria were analyzed and those generating highest MRI contrast were further investigated in tumor bearing mice. Among members of three classes of bacterial ferritin tested, bacterioferritin showed the most promise as a reporter gene. Although all three proteins accumulated similar amounts of iron when overexpressed individually, bacterioferritin showed the highest contrast change. By site-directed mutagenesis we also show that the heme iron, a unique part of the bacterioferritin molecule, is not critical for MRI contrast change. Tumor-specific induction of bacterioferritin-expression in colonized tumors resulted in contrast changes within the bacteria-colonized tumors. Conclusions: Our data suggest that colonization and gene expression by live vectors expressing bacterioferritin can be monitored by MRI due to contrast changes.}, language = {en} } @article{BlancoKuchenbaeckerCuadrasetal.2015, author = {Blanco, Ignacio and Kuchenbaecker, Karoline and Cuadras, Daniel and Wang, Xianshu and Barrowdale, Daniel and Ruiz de Garibay, Gorka and Librado, Pablo and Sanchez-Gracia, Alejandro and Rozas, Julio and Bonifaci, N{\´u}ria and McGuffog, Lesley and Pankratz, Vernon S. and Islam, Abul and Mateo, Francesca and Berenguer, Antoni and Petit, Anna and Catal{\`a}, Isabel and Brunet, Joan and Feliubadal{\´o}, Lidia and Tornero, Eva and Ben{\´i}tez, Javier and Osorio, Ana and Ram{\´o}n y Cajal, Teresa and Nevanlinna, Heli and Aittom{\"a}ki, Kristina and Arun, Banu K. and Toland, Amanda E. and Karlan, Beth Y. and Walsh, Christine and Lester, Jenny and Greene, Mark H. and Mai, Phuong L. and Nussbaum, Robert L. and Andrulis, Irene L. and Domchek, Susan M. and Nathanson, Katherine L. and Rebbeck, Timothy R. and Barkardottir, Rosa B. and Jakubowska, Anna and Lubinski, Jan and Durda, Katarzyna and Jaworska-Bieniek, Katarzyna and Claes, Kathleen and Van Maerken, Tom and D{\´i}ez, Orland and Hansen, Thomas V. and J{\o}nson, Lars and Gerdes, Anne-Marie and Ejlertsen, Bent and De la Hoya, Miguel and Cald{\´e}s, Trinidad and Dunning, Alison M. and Oliver, Clare and Fineberg, Elena and Cook, Margaret and Peock, Susan and McCann, Emma and Murray, Alex and Jacobs, Chris and Pichert, Gabriella and Lalloo, Fiona and Chu, Carol and Dorkins, Huw and Paterson, Joan and Ong, Kai-Ren and Teixeira, Manuel R. and Hogervorst, Frans B. L. and Van der Hout, Annemarie H. and Seynaeve, Caroline and Van der Luijt, Rob B. and Ligtenberg, Marjolijn J. L. and Devilee, Peter and Wijnen, Juul T. and Rookus, Matti A. and Meijers-Heijboer, Hanne E. J. and Blok, Marinus J. and Van den Ouweland, Ans M. W. and Aalfs, Cora M. and Rodriguez, Gustavo C. and Phillips, Kelly-Anne A. and Piedmonte, Marion and Nerenstone, Stacy R. and Bae-Jump, Victoria L. and O'Malley, David M. and Schmutzler, Rita K. and Wappenschmidt, Barbara and Rhiem, Kerstin and Engel, Christoph and Meindl, Alfons and Ditsch, Nina and Arnold, Norbert and Plendl, Hansjoerg J. and Niederacher, Dieter and Sutter, Christian and Wang-Gohrke, Shan and Steinemann, Doris and Preisler-Adams, Sabine and Kast, Karin and Varon-Mateeva, Raymonda and Gehrig, Andrea and Bojesen, Anders and Pedersen, Inge Sokilde and Sunde, Lone and Birk Jensen, Uffe and Thomassen, Mads and Kruse, Torben A. and Foretova, Lenka and Peterlongo, Paolo and Bernard, Loris and Peissel, Bernard and Scuvera, Giulietta and Manoukian, Siranoush and Radice, Paolo and Ottini, Laura and Montagna, Marco and Agata, Simona and Maugard, Christine and Simard, Jacques and Soucy, Penny and Berger, Andreas and Fink-Retter, Anneliese and Singer, Christian F. and Rappaport, Christine and Geschwantler-Kaulich, Daphne and Tea, Muy-Kheng and Pfeiler, Georg and John, Esther M. and Miron, Alex and Neuhausen, Susan L. and Terry, Mary Beth and Chung, Wendy K. and Daly, Mary B. and Goldgar, David E. and Janavicius, Ramunas and Dorfling, Cecilia M. and Van Rensburg, Elisabeth J. and Fostira, Florentia and Konstantopoulou, Irene and Garber, Judy and Godwin, Andrew K. and Olah, Edith and Narod, Steven A. and Rennert, Gad and Paluch, Shani Shimon and Laitman, Yael and Friedman, Eitan and Liljegren, Annelie and Rantala, Johanna and Stenmark-Askmalm, Marie and Loman, Niklas and Imyanitov, Evgeny N. and Hamann, Ute and Spurdle, Amanda B. and Healey, Sue and Weitzel, Jeffrey N. and Herzog, Josef and Margileth, David and Gorrini, Chiara and Esteller, Manel and G{\´o}mez, Antonio and Sayols, Sergi and Vidal, Enrique and Heyn, Holger and Stoppa-Lyonnet, Dominique and L{\´e}on{\´e}, Melanie and Barjhoux, Laure and Fassy-Colcombet, Marion and Pauw, Antoine de and Lasset, Christine and Fert Ferrer, Sandra and Castera, Laurent and Berthet, Pascaline and Cornelis, Fran{\c{c}}ois and Bignon, Yves-Jean and Damiola, Francesca and Mazoyer, Sylvie and Sinilnikova, Olga M. and Maxwell, Christopher A. and Vijai, Joseph and Robson, Mark and Kauff, Noah and Corines, Marina J. and Villano, Danylko and Cunningham, Julie and Lee, Adam and Lindor, Noralane and L{\´a}zaro, Conxi and Easton, Douglas F. and Offit, Kenneth and Chenevix-Trench, Georgia and Couch, Fergus J. and Antoniou, Antonis C. and Pujana, Miguel Angel}, title = {Assessing associations between the AURKA-HMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0120020}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143469}, pages = {e0120020}, year = {2015}, abstract = {While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood approach. The association of HMMR rs299290 with breast cancer risk in BRCA1 mutation carriers was confirmed: per-allele hazard ratio (HR) = 1.10, 95\% confidence interval (CI) 1.04 - 1.15, p = 1.9 x 10\(^{-4}\) (false discovery rate (FDR)-adjusted p = 0.043). Variation in CSTF1, located next to AURKA, was also found to be associated with breast cancer risk in BRCA2 mutation carriers: rs2426618 per-allele HR = 1.10, 95\% CI 1.03 - 1.16, p = 0.005 (FDR-adjusted p = 0.045). Assessment of pairwise interactions provided suggestions (FDR-adjusted p\(_{interaction}\) values > 0.05) for deviations from the multiplicative model for rs299290 and CSTF1 rs6064391, and rs299290 and TUBG1 rs11649877 in both BRCA1 and BRCA2 mutation carriers. Following these suggestions, the expression of HMMR and AURKA or TUBG1 in sporadic breast tumors was found to potentially interact, influencing patients' survival. Together, the results of this study support the hypothesis of a causative link between altered function of AURKA-HMMR-TPX2-TUBG1 and breast carcinogenesis in BRCA1/2 mutation carriers.}, language = {en} } @article{HertleinSturmKircheretal.2011, author = {Hertlein, Tobias and Sturm, Volker and Kircher, Stefan and Basse-L{\"u}sebrink, Thomas and Haddad, Daniel and Ohlsen, Knut and Jakob, Peter}, title = {Visualization of Abscess Formation in a Murine Thigh Infection Model of \(Staphylococcus\) \(aureus\) by (19)F-Magnetic Resonance Imaging (MRI)}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0018246}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142846}, pages = {e18246}, year = {2011}, abstract = {Background: During the last years, (19)F-MRI and perfluorocarbon nanoemulsion (PFC) emerged as a powerful contrast agent methodology to track cells and to visualize inflammation. We applied this new modality to visualize deep tissue abscesses during acute and chronic phase of inflammation caused by Staphylococcus aureus infection. Methodology and Principal Findings: In this study, a murine thigh infection model was used to induce abscess formation and PFC or CLIO (cross linked ironoxides) was administered during acute or chronic phase of inflammation. 24 h after inoculation, the contrast agent accumulation was imaged at the site of infection by MRI. Measurements revealed a strong accumulation of PFC at the abscess rim at acute and chronic phase of infection. The pattern was similar to CLIO accumulation at chronic phase and formed a hollow sphere around the edema area. Histology revealed strong influx of neutrophils at the site of infection and to a smaller extend macrophages during acute phase and strong influx of macrophages at chronic phase of inflammation. Conclusion and Significance: We introduce (19)F-MRI in combination with PFC nanoemulsions as a new platform to visualize abscess formation in a murine thigh infection model of S. aureus. The possibility to track immune cells in vivo by this modality offers new opportunities to investigate host immune response, the efficacy of antibacterial therapies and the influence of virulence factors for pathogenesis.}, language = {en} } @article{TonyBurmesterSchulzeKoopsetal.2011, author = {Tony, Hans-Peter and Burmester, Gerd and Schulze-Koops, Hendrik and Grunke, Mathias and Henes, Joerg and K{\"o}tter, Ina and Haas, Judith and Unger, Leonore and Lovric, Svjetlana and Haubitz, Marion and Fischer-Betz, Rebecca and Chehab, Gamal and Rubbert-Roth, Andrea and Specker, Christof and Weinerth, Jutta and Holle, Julia and M{\"u}ller-Ladner, Ulf and K{\"o}nig, Ramona and Fiehn, Christoph and Burgwinkel, Philip and Budde, Klemens and S{\"o}rensen, Helmut and Meurer, Michael and Aringer, Martin and Kieseier, Bernd and Erfurt-Berge, Cornelia and Sticherling, Michael and Veelken, Roland and Ziemann, Ulf and Strutz, Frank and von Wussow, Praxis and Meier, Florian MP and Hunzelmann, Nico and Schmidt, Enno and Bergner, Raoul and Schwarting, Andreas and Eming, R{\"u}diger and Schwarz-Eywill, Michael and Wassenberg, Siegfried and Fleck, Martin and Metzler, Claudia and Zettl, Uwe and Westphal, Jens and Heitmann, Stefan and Herzog, Anna L. and Wiendl, Heinz and Jakob, Waltraud and Schmidt, Elvira and Freivogel, Klaus and D{\"o}rner, Thomas and Hertl, Michael and Stadler, Rudolf}, title = {Safety and clinical outcomes of rituximab therapy in patients with different autoimmune diseases: experience from a national registry (GRAID)}, series = {Arthritis Research \& Therapy}, volume = {13}, journal = {Arthritis Research \& Therapy}, number = {R75}, doi = {10.1186/ar3337}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142856}, pages = {1-14}, year = {2011}, abstract = {Introduction: Evidence from a number of open-label, uncontrolled studies has suggested that rituximab may benefit patients with autoimmune diseases who are refractory to standard-of-care. The objective of this study was to evaluate the safety and clinical outcomes of rituximab in several standard-of-care-refractory autoimmune diseases (within rheumatology, nephrology, dermatology and neurology) other than rheumatoid arthritis or non-Hodgkin's lymphoma in a real-life clinical setting. Methods: Patients who received rituximab having shown an inadequate response to standard-of-care had their safety and clinical outcomes data retrospectively analysed as part of the German Registry of Autoimmune Diseases. The main outcome measures were safety and clinical response, as judged at the discretion of the investigators. Results: A total of 370 patients (299 patient-years) with various autoimmune diseases (23.0\% with systemic lupus erythematosus, 15.7\% antineutrophil cytoplasmic antibody-associated granulomatous vasculitides, 15.1\% multiple sclerosis and 10.0\% pemphigus) from 42 centres received a mean dose of 2,440 mg of rituximab over a median (range) of 194 (180 to 1,407) days. The overall rate of serious infections was 5.3 per 100 patient-years during rituximab therapy. Opportunistic infections were infrequent across the whole study population, and mostly occurred in patients with systemic lupus erythematosus. There were 11 deaths (3.0\% of patients) after rituximab treatment (mean 11.6 months after first infusion, range 0.8 to 31.3 months), with most of the deaths caused by infections. Overall (n = 293), 13.3\% of patients showed no response, 45.1\% showed a partial response and 41.6\% showed a complete response. Responses were also reflected by reduced use of glucocorticoids and various immunosuppressives during rituximab therapy and follow-up compared with before rituximab. Rituximab generally had a positive effect on patient well-being (physician's visual analogue scale; mean improvement from baseline of 12.1 mm)}, language = {en} } @article{MagyarWagnerThomasetal.2019, author = {Magyar, Attila and Wagner, Martin and Thomas, Phillip and Malsch, Carolin and Schneider, Reinhard and St{\"o}rk, Stefan and Heuschmann, Peter U and Leyh, Rainer G and Oezkur, Mehmet}, title = {HO-1 concentrations 24 hours after cardiac surgery are associated with the incidence of acute kidney injury: a prospective cohort study}, series = {International Journal of Nephrology and Renovascular Disease}, volume = {12}, journal = {International Journal of Nephrology and Renovascular Disease}, doi = {10.2147/IJNRD.S165308}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177250}, pages = {9-18}, year = {2019}, abstract = {Background: Acute kidney injury (AKI) is a serious complication after cardiac surgery that is associated with increased mortality and morbidity. Heme oxygenase-1 (HO-1) is an enzyme synthesized in renal tubular cells as one of the most intense responses to oxidant stress linked with protective, anti-inflammatory properties. Yet, it is unknown if serum HO-1 induction following cardiac surgical procedure involving cardiopulmonary bypass (CPB) is associated with incidence and severity of AKI. Patients and methods: In the present study, we used data from a prospective cohort study of 150 adult cardiac surgical patients. HO-1 measurements were performed before, immediately after and 24 hours post-CPB. In univariate and multivariate analyses, the association between HO-1 and AKI was investigated. Results: AKI with an incidence of 23.3\% (35 patients) was not associated with an early elevation of HO-1 after CPB in all patients (P=0.88), whereas patients suffering from AKI developed a second burst of HO-1 24 hours after CBP. In patients without AKI, the HO-1 concentrations dropped to baseline values (P=0.031). Furthermore, early HO-1 induction was associated with CPB time (P=0.046), while the ones 24 hours later lost this association (P=0.219). Conclusion: The association of the second HO-1 burst 24 hours after CBP might help to distinguish between the causality of AKI in patients undergoing CBP, thus helping to adapt patient stratification and management.}, language = {en} } @article{OberlaenderPletinckxDaehleretal.2011, author = {Oberl{\"a}nder, Uwe and Pletinckx, Katrien and D{\"a}hler, Anja and M{\"u}ller, Nora and Lutz, Manfred and Arzberger, Thomas and Riederer, Peter and Gerlach, Manfred and Koutsilieri, Eleni and Scheller, Carsten}, title = {Neuromelanin is an Immune Stimulator for Dendritic Cells in vitro}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69210}, year = {2011}, abstract = {Background: Parkinson's disease (PD) is characterized at the cellular level by a destruction of neuromelanin (NM)-containing dopaminergic cells and a profound reduction in striatal dopamine. It has been shown recently that antimelanin antibodies are increased in sera of Parkinson patients, suggesting that NM may act as an autoantigen. In this study we tested whether NM is being recognized by dendritic cells (DCs), the major cell type for inducing Tand B-cell responses in vivo. This recognition of NM by DCs is a prerequisite to trigger an adaptive autoimmune response directed against NM-associated structures. Results: Murine DCs were treated with NM of substantia nigra (SN) from human subjects or with synthetic dopamine melanin (DAM). DCs effectively phagocytized NM and subsequently developed a mature phenotype (CD86high/MHCIIhigh). NM-activated DCs secreted the proinflammatory cytokines IL-6 and TNF-a. In addition, they potently triggered T cell proliferation in a mixed lymphocyte reaction, showing that DC activation was functional to induce a primary T cell response. In contrast, DAM, which lacks the protein and lipid components of NM but mimics the dopamine-melanin backbone of NM, had only very little effect on DC phenotype and function. Conclusions: NM is recognized by DCs in vitro and triggers their maturation. If operative in vivo, this would allow the DC-mediated transport and presentation of SN antigens to the adaptive immune system, leading to autoimmmunity in susceptible individuals. Our data provide a rationale for an autoimmune-based pathomechanism of PD with NM as the initial trigger.}, subject = {Immunstimulation}, language = {en} } @article{SzalayHillStritzkeretal.2011, author = {Szalay, Aladar A. and Hill, Philip J. and Stritzker, Jochen and Scadeng, Miriam and Geissinger, Ulrike and Haddad, Daniel and Basse-L{\"u}sebrink, Thomas C. and Gbureck, Uwe and Jakob, Peter}, title = {Magnetic Resonance Imaging of Tumors Colonized with Bacterial Ferritin-Expressing Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75789}, year = {2011}, abstract = {Background: Recent studies have shown that human ferritin can be used as a reporter of gene expression for magnetic resonance imaging (MRI). Bacteria also encode three classes of ferritin-type molecules with iron accumulation properties. Methods and Findings: Here, we investigated whether these bacterial ferritins can also be used as MRI reporter genes and which of the bacterial ferritins is the most suitable reporter. Bacterial ferritins were overexpressed in probiotic E. coli Nissle 1917. Cultures of these bacteria were analyzed and those generating highest MRI contrast were further investigated in tumor bearing mice. Among members of three classes of bacterial ferritin tested, bacterioferritin showed the most promise as a reporter gene. Although all three proteins accumulated similar amounts of iron when overexpressed individually, bacterioferritin showed the highest contrast change. By site-directed mutagenesis we also show that the heme iron, a unique part of the bacterioferritin molecule, is not critical for MRI contrast change. Tumor-specific induction of bacterioferritin-expression in colonized tumors resulted in contrast changes within the bacteria-colonized tumors. Conclusions: Our data suggest that colonization and gene expression by live vectors expressing bacterioferritin can be monitored by MRI due to contrast changes}, subject = {Escherichia coli}, language = {en} } @article{JakobHertleinSturmetal.2011, author = {Jakob, Peter and Hertlein, Tobias and Sturm, Volker and Kircher, Stefan and Basse-L{\"u}sebrink, Thomas and Haddad, Daniel and Ohlsen, Knut}, title = {Visualization of Abscess Formation in a Murine Thigh Infection Model of Staphylococcus aureus by 19F-Magnetic Resonance Imaging (MRI)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74994}, year = {2011}, abstract = {Background: During the last years, 19F-MRI and perfluorocarbon nanoemulsion (PFC) emerged as a powerful contrast agent based MRI methodology to track cells and to visualize inflammation. We applied this new modality to visualize deep tissue abscesses during acute and chronic phase of inflammation caused by Staphylococcus aureus infection. Methodology and Principal Findings: In this study, a murine thigh infection model was used to induce abscess formation and PFC or CLIO (cross linked ironoxides) was administered during acute or chronic phase of inflammation. 24 h after inoculation, the contrast agent accumulation was imaged at the site of infection by MRI. Measurements revealed a strong accumulation of PFC at the abscess rim at acute and chronic phase of infection. The pattern was similar to CLIO accumulation at chronic phase and formed a hollow sphere around the edema area. Histology revealed strong influx of neutrophils at the site of infection and to a smaller extend macrophages during acute phase and strong influx of macrophages at chronic phase of inflammation. Conclusion and Significance: We introduce 19F-MRI in combination with PFC nanoemulsions as a new platform to visualize abscess formation in a murine thigh infection model of S. aureus. The possibility to track immune cells in vivo by this modality offers new opportunities to investigate host immune response, the efficacy of antibacterial therapies and the influence of virulence factors for pathogenesis.}, subject = {Staphylococcus aureus}, language = {en} } @article{GeissingerSadlerRothetal.2010, author = {Geissinger, Eva and Sadler, Petra and Roth, Sabine and Grieb, Tina and Puppe, Bernhard and Mueller, Nora and Reimer, Peter and Vetter-Kauczok, Claudia S. and Wenzel, Joerg and Bonzheim, Irina and Ruediger, Thomas and Mueller-Hermelink, Hans Konrad and Rosenwald, Andreas}, title = {Disturbed expression of the T-cell receptor/CD3 complex and associated signaling molecules in CD30(+) T-cell lymphoproliferations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68179}, year = {2010}, abstract = {Background CD30+ T-cell lymphoproliferations comprise a spectrum of clinically heterogeneous entities, including systemic anaplastic large cell lymphomas (ALK- and ALK+) and primary cutaneous CD30+ T-cell lymphoproliferative disorders. While all these entities are characterized by proliferation of highly atypical, anaplastic CD30+ T cells, the expression of T-cell specific antigens in the tumor cells is not consistently detectable. Design and Methods We evaluated biopsies from 19 patients with primary cutaneous CD30+ lymphoproliferative disorders, 38 with ALK- and 33 with ALK+ systemic anaplastic large cell lymphoma. The biopsies were examined for the expression of T-cell receptoraβ/CD3 complex (CD3γ, δ, ε, ζ), transcription factors regulating T-cell receptor expression (ATF1, ATF2, TCF-1, TCF-1a/LEF-1, Ets1), and molecules of T-cell receptor-associated signaling cascades (Lck, ZAP-70, LAT, bcl-10, Carma1, NFATc1, c-Jun, c-Fos, Syk) using immunohistochemistry. Results In comparison to the pattern in 20 peripheral T-cell lymphomas, not otherwise specified, we detected a highly disturbed expression of the T-cell receptor/CD3 complex, TCF-1, TCF- 1a/LEF-1, Lck, ZAP-70, LAT, NFATc1, c-Jun, c-Fos and Syk in most of the systemic anaplastic large cell lymphomas. In addition, primary cutaneous CD30+ lymphoproliferative disorders showed such a similar expression pattern to that of systemic anaplastic large cell lymphomas, that none of the markers we investigated can reliably distinguish between these CD30+ T-cell lymphoproliferations. Conclusions Severely altered expression of the T-cell receptor/CD3 complex, T-cell receptor-associated transcription factors and signal transduction molecules is a common characteristic of systemic and cutaneous CD30+ lymphoproliferations, although the clinical behavior of these entities is very different. Since peripheral T-cell lymphomas, not otherwise specified retain the full expression program required for functioning T-cell receptor signaling, the differential expression of a subset of these markers might be of diagnostic utility in distinguishing peripheral T-cell lymphomas, not otherwise specified from the entire group of CD30+ lymphoproliferations.}, subject = {Medizin}, language = {en} } @inproceedings{SchwaneckGlosBofingeretal.2008, author = {Schwaneck, Stefan and Glos, Michael and Bofinger, Peter and Straubhaar, Thomas and Haase, Axel and Pinkwart, Andreas and Kunze, Mario and {\"O}sterle, Irene and Seubert, Marc and Nowak, Matthias and Rosen, Holga and Steinle, Andreas and Schorr, Leander and Fichtner, Caroline and Fischl, Bernd and Wittrock, Max and G{\"u}nther, Niclas and Roth, Isabelle and Verburg, Erik and Sextl, Gerhard and Heitm{\"u}ller, Lars and M{\"u}ller, Norman and Frashek, Andr{\´e} and Stetter, Ulrich}, title = {Innovationen - Performancetreiber und nachhaltiger Wirtschaftsmotor in Deutschland? Festschrift zum 5. W{\"u}rzburger Wirtschaftssymposium}, organization = {5. W{\"u}rzburger Wirtschaftssymposium 2008}, isbn = {978-3-923959-58-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53559}, year = {2008}, abstract = {5. W{\"u}rzburger Wirtschaftssymposium, 20.11.2008 Deutsche Erfindungen ver{\"a}ndern die Welt - heute wie vor 500 Jahren. Von Buchdruck, {\"u}ber Dieselmotor, Gl{\"u}hbirne bis hin zu Airbag, Aspirin, D{\"u}bel, Fernseher und mp3-Format. Alleine dieser bescheidene {\"U}berblick des Ph{\"a}nomens "Made in Germany" l{\"a}sst den Betrachter die Bedeutung und das Potenzial von Innovationen am Standort Deutschland schnell erkennen. Experten aus Wirtschaft, Politik und Gesellschaft setzten sich am 20.11.2008 unter der Leitfrage: "Innovationen - Performancetreiber und nachhaltiger Wirtschaftsmotor in Deutschland?" mit der Bedeutung von Innovationen f{\"u}r den Standort Deutschland auseinander. Die Festschrift rundet - neben Interviews mit und Gastbeitr{\"a}gen von Referenten der Veranstaltung - das 5. W{\"u}rzburger Wirtschaftssymposium mit Stellungnahmen und Beitr{\"a}gen renommierter Experten ab. Zu Wort kommen dabei Jungunternehmer ebenso wie Wissenschaftler der Universit{\"a}t W{\"u}rzburg und Vertreter externer Organisationen.}, subject = {Innovationsforschung}, language = {de} } @article{KleinschnitzGrundWingleretal.2010, author = {Kleinschnitz, Christoph and Grund, Henrike and Wingler, Kirstin and Armitage, Melanie E. and Jones, Emma and Mittal, Manish and Barit, David and Schwarz, Tobias and Geis, Christian and Kraft, Peter and Barthel, Konstanze and Schuhmann, Michael K. and Herrmann, Alexander M. and Meuth, Sven G. and Stoll, Guido and Meurer, Sabine and Schrewe, Anja and Becker, Lore and Gailus-Durner, Valerie and Fuchs, Helmut and Klopstock, Thomas and de Angelis, Martin Hrabe and Jandeleit-Dahm, Karin and Shah, Ajay M. and Weissmann, Norbert and Schmidt, Harald H. H. W.}, title = {Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68416}, year = {2010}, abstract = {Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90\% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox42/2) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox42/2 mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.}, subject = {Schlaganfall}, language = {en} } @article{MahmoodMuhammadSchmalzingetal.2015, author = {Mahmood, Zafar and Muhammad, Khalid and Schmalzing, Marc and Roll, Petra and D{\"o}rner, Thomas and Tony, Hans-Peter}, title = {CD27-IgD- memory B cells are modulated by in vivo interleukin-6 receptor (IL-6R) blockade in rheumatoid arthritis}, series = {Arthritis Research \& Therapy}, volume = {17}, journal = {Arthritis Research \& Therapy}, number = {61}, doi = {10.1186/s13075-015-0580-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126506}, year = {2015}, abstract = {Introduction Enhanced B cell activity, particularly memory B cells have gained interest in evaluating response during therapies with biologics. CD27-IgD- double-negative (DN) B cells lacking the conventional memory marker CD27 are reported to be part of the memory compartment, however, only scarce data is available for rheumatoid arthritis (RA). We therefore focused on DN B cells in RA, studied their isotypes and modulation during interleukin-6 receptor (IL-6R) inhibition by tocilizumab (TCZ). Methods DN B cells were phenotypically analyzed from 40 RA patients during TCZ at baseline week 12, week 24 and 1 year. A single B cell polymerase chain reaction (PCR) approach was used to study Ig receptors, VH gene rearrangements and specific isotypes. Results Phenotypic analysis showed a significantly expanded population of DN B cells in RA which contain a heterogeneous mixture of IgG-, IgA- and IgM-expressing cells with a clear dominance of IgG+ cells. DN B cells carry rearranged heavy chain gene sequences with a diversified mutational pattern consistent with memory B cells. In contrast to tumor necrosis factor alpha (TNF-α) inhibition, a significant reduction in mutational frequency of BCR gene rearrangements at week 12, 24 and 1 year (P <0.0001) was observed by in vivo IL-6R inhibition. These changes were observed for all BCR isotypes IgG, IgA and IgM at week 12, 24 and 1 year (P <0.0001). IgA-RF, IgA serum level and IgA+ DN B cells decreased significantly (P <0.05) at week 12 and week 24 during TCZ. Patients with a good European League Against Rheumatism (EULAR) response to TCZ had less DN B cells at baseline as compared to moderate responders (P = 0.006). Univariate logistic regression analysis revealed that the frequency of DN B cells at baseline is inversely correlated to a subsequent good EULAR response (P = 0.024) with an odds ratio of 1.48 (95\% confidence interval as 1.05 to 2.06). Conclusions In RA, the heterogeneous DN B cell compartment is expanded and dominated by IgG isotype. TCZ can modulate the mutational status of DN Ig isotype receptors over 1 year. Interestingly, the frequency of DN B cells in RA may serve as a baseline predictor of subsequent EULAR response to TCZ.}, language = {en} } @article{CouchWangMcGuffogetal.2013, author = {Couch, Fergus J. and Wang, Xianshu and McGuffog, Lesley and Lee, Andrew and Olswold, Curtis and Kuchenbaecker, Karoline B. and Soucy, Penny and Fredericksen, Zachary and Barrowdale, Daniel and Dennis, Joe and Gaudet, Mia M. and Dicks, Ed and Kosel, Matthew and Healey, Sue and Sinilnikova, Olga M. and Lee, Adam and Bacot, Fran{\c{c}}ios and Vincent, Daniel and Hogervorst, Frans B. L. and Peock, Susan and Stoppa-Lyonnet, Dominique and Jakubowska, Anna and Radice, Paolo and Schmutzler, Rita Katharina and Domchek, Susan M. and Piedmonte, Marion and Singer, Christian F. and Friedman, Eitan and Thomassen, Mads and Hansen, Thomas V. O. and Neuhausen, Susan L. and Szabo, Csilla I. and Blanco, Ingnacio and Greene, Mark H. and Karlan, Beth Y. and Garber, Judy and Phelan, Catherine M. and Weitzel, Jeffrey N. and Montagna, Marco and Olah, Edith and Andrulis, Irene L. and Godwin, Andrew K. and Yannoukakos, Drakoulis and Goldgar, David E. and Caldes, Trinidad and Nevanlinna, Heli and Osorio, Ana and Terry, Mary Beth and Daly, Mary B. and van Rensburg, Elisabeth J. and Hamann, Ute and Ramus, Susan J. and Toland, Amanda Ewart and Caligo, Maria A. and Olopade, Olufunmilayo I. and Tung, Nadine and Claes, Kathleen and Beattie, Mary S. and Southey, Melissa C. and Imyanitov, Evgeny N. and Tischkowitz, Marc and Janavicius, Ramunas and John, Esther M. and Kwong, Ava and Diez, Orland and Kwong, Ava and Balma{\~n}a, Judith and Barkardottir, Rosa B. and Arun, Banu K. and Rennert, Gad and Teo, Soo-Hwang and Ganz, Patricia A. and Campbell, Ian and van der Hout, Annemarie H. and van Deurzen, Carolien H. M. and Seynaeve, Caroline and Garcia, Encarna B. G{\´o}mez and van Leeuwen, Flora E. and Meijers-Heijboer, Hanne E. J. and Gille, Johannes J. P. and Ausems, Magreet G. E. M. and Blok, Marinus J. and Ligtenberg, Marjolinjin J. L. and Rookus, Matti A. and Devilee, Peter and Verhoef, Senno and van Os, Theo A. M. and Wijnen, Juul T. and Frost, Debra and Ellis, Steve and Fineberg, Elena and Platte, Radke and Evans, D. Gareth and Izatt, Luise and Eeles, Rosalind A. and Adlard, Julian and Eccles, Diana M. and Cook, Jackie and Brewer, Carole and Douglas, Fiona and Hodgson, Shirley and Morrison, Patrick J. and Side, Lucy E. and Donaldson, Alan and Houghton, Catherine and Rogers, Mark T. and Dorkins, Huw and Eason, Jacqueline and Gregory, Helen and McCann, Emma and Murray, Alex and Calender, Alain and Hardouin, Agn{\`e}s and Berthet, Pascaline and Delnatte, Capucine and Nogues, Catherine and Lasset, Christine and Houdayer, Claude and Leroux,, Dominique and Rouleau, Etienne and Prieur, Fabienne and Damiola, Francesca and Sobol, Hagay and Coupier, Isabelle and Venat-Bouvet, Laurence and Castera, Laurent and Gauthier-Villars, Marion and L{\´e}on{\´e}, M{\´e}lanie and Pujol, Pascal and Mazoyer, Sylvie and Bignon, Yves-Jean and Zlowocka-Perlowska, Elzbieta and Gronwald, Jacek and Lubinski,, Jan and Durda, Katarzyna and Jaworska, Katarzyna and Huzarski, Tomasz and Spurdle, Amanda B. and Viel, Alessandra and Peissel, Bernhard and Bonanni, Bernardo and Melloni, Guilia and Ottini, Laura and Papi, Laura and Varesco, Liliana and Tibiletti, Maria Grazia and Peterlongo, Paolo and Volorio, Sara and Manoukian, Siranoush and Pensotti, Valeria and Arnold, Norbert and Engel, Christoph and Deissler, Helmut and Gadzicki, Dorothea and Gehrig, Andrea and Kast, Karin and Rhiem, Kerstin and Meindl, Alfons and Niederacher, Dieter and Ditsch, Nina and Plendl, Hansjoerg and Preisler-Adams, Sabine and Engert, Stefanie and Sutter, Christian and Varon-Mateeva, Raymenda and Wappenschmidt, Barbara and Weber, Bernhard H. F. and Arver, Brita and Stenmark-Askmalm, Marie and Loman, Niklas and Rosenquist, Richard and Einbeigi, Zakaria and Nathanson, Katherine L. and Rebbeck, Timothy R. and Blank, Stephanie V. and Cohn, David E. and Rodriguez, Gustavo C. and Small, Laurie and Friedlander, Michael and Bae-Jump, Victoria L. and Fink-Retter, Anneliese and Rappaport, Christine and Gschwantler-Kaulich, Daphne and Pfeiler, Georg and Tea, Muy-Kheng and Lindor, Noralane M. and Kaufman, Bella and Paluch, Shani Shimon and Laitman, Yael and Skytte, Anne-Bine and Gerdes, Anne-Marie and Pedersen, Inge Sokilde and Moeller, Sanne Traasdahl and Kruse, Torben A. and Jensen, Uffe Birk and Vijai, Joseph and Sarrel, Kara and Robson, Mark and Kauff, Noah and Mulligan, Anna Marie and Glendon, Gord and Ozcelik, Hilmi and Ejlertsen, Bent and Nielsen, Finn C. and J{\o}nson, Lars and Andersen, Mette K. and Ding, Yuan Chun and Steele, Linda and Foretova, Lenka and Teul{\´e}, Alex and Lazaro, Conxi and Brunet, Joan and Pujana, Miquel Angel and Mai, Phuong L. and Loud, Jennifer T. and Walsh, Christine and Lester, Jenny and Orsulic, Sandra and Narod, Steven A. and Herzog, Josef and Sand, Sharon R. and Tognazzo, Silvia and Agata, Simona and Vaszko, Tibor and Weaver, Joellen and Stravropoulou, Alexandra V. and Buys, Saundra S. and Romero, Atocha and de la Hoya, Miguel and Aittom{\"a}ki, Kristiina and Muranen, Taru A. and Duran, Mercedes and Chung, Wendy K. and Lasa, Adriana and Dorfling, Cecilia M. and Miron, Alexander and Benitez, Javier and Senter, Leigha and Huo, Dezheng and Chan, Salina B. and Sokolenko, Anna P. and Chiquette, Jocelyne and Tihomirova, Laima and Friebel, Tara M. and Agnarsson, Bjarne A. and Lu, Karen H. and Lejbkowicz, Flavio and James, Paul A. and Hall, Per and Dunning, Alison M. and Tessier, Daniel and Cunningham, Julie and Slager, Susan L. and Chen, Wang and Hart, Steven and Stevens, Kristen and Simard, Jacques and Pastinen, Tomi and Pankratz, Vernon S. and Offit, Kenneth and Easton, Douglas F. and Chenevix-Trench, Georgia and Antoniou, Antonis C.}, title = {Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk}, series = {PLOS Genetics}, volume = {9}, journal = {PLOS Genetics}, number = {3}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127947}, pages = {e1003212}, year = {2013}, abstract = {BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 x 10(-8), HR = 1.14, 95\% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 x 10(-8), HR = 1.27, 95\% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4 x 10(-8), HR = 1.20, 95\% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2 x 10(-4)). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5\% of BRCA1 carriers at lowest risk are 28\%-50\% compared to 81\%-100\% for the 5\% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5\% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28\% or lower, whereas the 5\% at highest risk will have a risk of 63\% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.}, language = {en} } @article{HansmannPliushchLeubneretal.2012, author = {Hansmann, Tamara and Pliushch, Galyna and Leubner, Monika and Kroll, Patricia and Endt, Daniela and Gehrig, Andrea and Preisler-Adams, Sabine and Wieacker, Peter and Haaf, Thomas}, title = {Constitutive promoter methylation of BRCA1 and RAD51C in patients with familial ovarian cancer and early-onset sporadic breast cancer}, series = {Human Molecular Genetics}, volume = {21}, journal = {Human Molecular Genetics}, number = {21}, doi = {10.1093/hmg/dds308}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125673}, pages = {4669-4679}, year = {2012}, abstract = {Genetic defects in breast cancer (BC) susceptibility genes, most importantly BRCA1 and BRCA2, account for ∼40\% of hereditary BC and ovarian cancer (OC). Little is known about the contribution of constitutive (soma-wide) epimutations to the remaining cases. We developed bisulfite pyrosequencing assays to screen >600 affected BRCA1/BRCA2 mutation-negative patients from the German Consortium for Hereditary Breast and Ovarian Cancer for constitutive hypermethylation of ATM, BRCA1, BRCA2, RAD51C, PTEN and TP53 in blood cells. In a second step, patients with ≥6\% promoter methylation were analyzed by bisulfite plasmid sequencing to demonstrate the presence of hypermethylated alleles (epimutations), indicative of epigenetic gene silencing. Altogether we identified nine (1.4\%) patients with constitutive BRCA1 and three (0.5\%) with RAD51C hypermethylation. Epimutations were found in both sporadic cases, in particular in 2 (5.5\%) of 37 patients with early-onset BC, and familial cases, in particular 4 (10\%) of 39 patients with OC. Hypermethylation was always confined to one of the two parental alleles in a subset (12-40\%) of the analyzed cells. Because epimutations occurred in cell types from different embryonal layers, they most likely originated in single cells during early somatic development. We propose that analogous to germline genetic mutations constitutive epimutations may serve as the first hit of tumor development. Because the role of constitutive epimutations in cancer development is likely to be largely underestimated, future strategies for effective testing of susceptibility to BC and OC should include an epimutation screen.}, language = {en} } @article{HerterStauchGallantetal.2015, author = {Herter, Eva K. and Stauch, Maria and Gallant, Maria and Wolf, Elmar and Raabe, Thomas and Gallant, Peter}, title = {snoRNAs are a novel class of biologically relevant Myc targets}, series = {BMC Biology}, volume = {13}, journal = {BMC Biology}, number = {25}, doi = {10.1186/s12915-015-0132-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124956}, year = {2015}, abstract = {Background Myc proteins are essential regulators of animal growth during normal development, and their deregulation is one of the main driving factors of human malignancies. They function as transcription factors that (in vertebrates) control many growth- and proliferation-associated genes, and in some contexts contribute to global gene regulation. Results We combine chromatin immunoprecipitation-sequencing (ChIPseq) and RNAseq approaches in Drosophila tissue culture cells to identify a core set of less than 500 Myc target genes, whose salient function resides in the control of ribosome biogenesis. Among these genes we find the non-coding snoRNA genes as a large novel class of Myc targets. All assayed snoRNAs are affected by Myc, and many of them are subject to direct transcriptional activation by Myc, both in Drosophila and in vertebrates. The loss of snoRNAs impairs growth during normal development, whereas their overexpression increases tumor mass in a model for neuronal tumors. Conclusions This work shows that Myc acts as a master regulator of snoRNP biogenesis. In addition, in combination with recent observations of snoRNA involvement in human cancer, it raises the possibility that Myc's transforming effects are partially mediated by this class of non-coding transcripts.}, language = {en} }