@article{TemmeFriebeSchmidtetal.2017, author = {Temme, Sebastian and Friebe, Daniela and Schmidt, Timo and Poschmann, Gereon and Hesse, Julia and Steckel, Bodo and St{\"u}hler, Kai and Kunz, Meik and Dandekar, Thomas and Ding, Zhaoping and Akhyari, Payam and Lichtenberg, Artur and Schrader, J{\"u}rgen}, title = {Genetic profiling and surface proteome analysis of human atrial stromal cells and rat ventricular epicardium-derived cells reveals novel insights into their cardiogenic potential}, series = {Stem Cell Research}, volume = {25}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2017.11.006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172716}, pages = {183-190}, year = {2017}, abstract = {Epicardium-derived cells (EPDC) and atrial stromal cells (ASC) display cardio-regenerative potential, but the molecular details are still unexplored. Signals which induce activation, migration and differentiation of these cells are largely unknown. Here we have isolated rat ventricular EPDC and rat/human ASC and performed genetic and proteomic profiling. EPDC and ASC expressed epicardial/mesenchymal markers (WT-1, Tbx18, CD73,CD90, CD44, CD105), cardiac markers (Gata4, Tbx5, troponin T) and also contained phosphocreatine. We used cell surface biotinylation to isolate plasma membrane proteins of rEPDC and hASC, Nano-liquid chromatography with subsequent mass spectrometry and bioinformatics analysis identified 396 rat and 239 human plasma membrane proteins with 149 overlapping proteins. Functional GO-term analysis revealed several significantly enriched categories related to extracellular matrix (ECM), cell migration/differentiation, immunology or angiogenesis. We identified receptors for ephrin and growth factors (IGF, PDGF, EGF, anthrax toxin) known to be involved in cardiac repair and regeneration. Functional category enrichment identified clusters around integrins, PI3K/Akt-signaling and various cardiomyopathies. Our study indicates that EPDC and ASC have a similar molecular phenotype related to cardiac healing/regeneration. The cell surface proteome repository will help to further unravel the molecular details of their cardio-regenerative potential and their role in cardiac diseases.}, language = {en} } @article{TanoeyBaechleBrenneretal.2022, author = {Tanoey, Justine and Baechle, Christina and Brenner, Hermann and Deckert, Andreas and Fricke, Julia and G{\"u}nther, Kathrin and Karch, Andr{\´e} and Keil, Thomas and Kluttig, Alexander and Leitzmann, Michael and Mikolajczyk, Rafael and Obi, Nadia and Pischon, Tobias and Schikowski, Tamara and Schipf, Sabine M. and Schulze, Matthias B. and Sedlmeier, Anja and Moreno Vel{\´a}squez, Ilais and Weber, Katharina S. and V{\"o}lzke, Henry and Ahrens, Wolfgang and Gastell, Sylvia and Holleczek, Bernd and J{\"o}ckel, Karl-Heinz and Katzke, Verena and Lieb, Wolfgang and Michels, Karin B. and Schmidt, B{\"o}rge and Teismann, Henning and Becher, Heiko}, title = {Birth order, Caesarean section, or daycare attendance in relation to child- and adult-onset type 1 diabetes: results from the German National Cohort}, series = {International Journal of Environmental Research and Public Health}, volume = {19}, journal = {International Journal of Environmental Research and Public Health}, number = {17}, issn = {1660-4601}, doi = {10.3390/ijerph191710880}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286216}, year = {2022}, abstract = {(1) Background: Global incidence of type 1 diabetes (T1D) is rising and nearly half occurred in adults. However, it is unclear if certain early-life childhood T1D risk factors were also associated with adult-onset T1D. This study aimed to assess associations between birth order, delivery mode or daycare attendance and type 1 diabetes (T1D) risk in a population-based cohort and whether these were similar for childhood- and adult-onset T1D (cut-off age 15); (2) Methods: Data were obtained from the German National Cohort (NAKO Gesundheitsstudie) baseline assessment. Self-reported diabetes was classified as T1D if: diagnosis age ≤ 40 years and has been receiving insulin treatment since less than one year after diagnosis. Cox regression was applied for T1D risk analysis; (3) Results: Analyses included 101,411 participants (100 childhood- and 271 adult-onset T1D cases). Compared to "only-children", HRs for second- or later-born individuals were 0.70 (95\% CI = 0.50-0.96) and 0.65 (95\% CI = 0.45-0.94), respectively, regardless of parental diabetes, migration background, birth year and perinatal factors. In further analyses, higher birth order reduced T1D risk in children and adults born in recent decades. Caesarean section and daycare attendance showed no clear associations with T1D risk; (4) Conclusions: Birth order should be considered in both children and adults' T1D risk assessment for early detection.}, language = {en} } @article{DoerkPeterlongoMannermaaetal.2019, author = {D{\"o}rk, Thilo and Peterlongo, Peter and Mannermaa, Arto and Bolla, Manjeet K. and Wang, Qin and Dennis, Joe and Ahearn, Thomas and Andrulis, Irene L. and Anton-Culver, Hoda and Arndt, Volker and Aronson, Kristan J. and Augustinsson, Annelie and Beane Freeman, Laura E. and Beckmann, Matthias W. and Beeghly-Fadiel, Alicia and Behrens, Sabine and Bermisheva, Marina and Blomqvist, Carl and Bogdanova, Natalia V. and Bojesen, Stig E. and Brauch, Hiltrud and Brenner, Hermann and Burwinkel, Barbara and Canzian, Federico and Chan, Tsun L. and Chang-Claude, Jenny and Chanock, Stephen J. and Choi, Ji-Yeob and Christiansen, Hans and Clarke, Christine L. and Couch, Fergus J. and Czene, Kamila and Daly, Mary B. and dos-Santos-Silva, Isabel and Dwek, Miriam and Eccles, Diana M. and Ekici, Arif B. and Eriksson, Mikael and Evans, D. Gareth and Fasching, Peter A. and Figueroa, Jonine and Flyger, Henrik and Fritschi, Lin and Gabrielson, Marike and Gago-Dominguez, Manuela and Gao, Chi and Gapstur, Susan M. and Garc{\´i}a-Closas, Montserrat and Garc{\´i}a-S{\´a}enz, Jos{\´e} A. and Gaudet, Mia M. and Giles, Graham G. and Goldberg, Mark S. and Goldgar, David E. and Guen{\´e}l, Pascal and Haeberle, Lothar and Haimann, Christopher A. and H{\aa}kansson, Niclas and Hall, Per and Hamann, Ute and Hartman, Mikael and Hauke, Jan and Hein, Alexander and Hillemanns, Peter and Hogervorst, Frans B. L. and Hooning, Maartje J. and Hopper, John L. and Howell, Tony and Huo, Dezheng and Ito, Hidemi and Iwasaki, Motoki and Jakubowska, Anna and Janni, Wolfgang and John, Esther M. and Jung, Audrey and Kaaks, Rudolf and Kang, Daehee and Kapoor, Pooja Middha and Khusnutdinova, Elza and Kim, Sung-Won and Kitahara, Cari M. and Koutros, Stella and Kraft, Peter and Kristensen, Vessela N. and Kwong, Ava and Lambrechts, Diether and Le Marchand, Loic and Li, Jingmei and Lindstr{\"o}m, Sara and Linet, Martha and Lo, Wing-Yee and Long, Jirong and Lophatananon, Artitaya and Lubiński, Jan and Manoochehri, Mehdi and Manoukian, Siranoush and Margolin, Sara and Martinez, Elena and Matsuo, Keitaro and Mavroudis, Dimitris and Meindl, Alfons and Menon, Usha and Milne, Roger L. and Mohd Taib, Nur Aishah and Muir, Kenneth and Mulligan, Anna Marie and Neuhausen, Susan L. and Nevanlinna, Heli and Neven, Patrick and Newman, William G. and Offit, Kenneth and Olopade, Olufunmilayo I. and Olshan, Andrew F. and Olson, Janet E. and Olsson, H{\aa}kan and Park, Sue K. and Park-Simon, Tjoung-Won and Peto, Julian and Plaseska-Karanfilska, Dijana and Pohl-Rescigno, Esther and Presneau, Nadege and Rack, Brigitte and Radice, Paolo and Rashid, Muhammad U. and Rennert, Gad and Rennert, Hedy S. and Romero, Atocha and Ruebner, Matthias and Saloustros, Emmanouil and Schmidt, Marjanka K. and Schmutzler, Rita K. and Schneider, Michael O. and Schoemaker, Minouk J. and Scott, Christopher and Shen, Chen-Yang and Shu, Xiao-Ou and Simard, Jaques and Slager, Susan and Smichkoska, Snezhana and Southey, Melissa C. and Spinelli, John J. and Stone, Jennifer and Surowy, Harald and Swerdlow, Anthony J. and Tamimi, Rulla M. and Tapper, William J. and Teo, Soo H. and Terry, Mary Beth and Toland, Amanda E. and Tollenaar, Rob A. E. M. and Torres, Diana and Torres-Mej{\´i}a, Gabriela and Troester, Melissa A. and Truong, Th{\´e}r{\`e}se and Tsugane, Shoichiro and Untch, Michael and Vachon, Celine M. and van den Ouweland, Ans M. W. and van Veen, Elke M. and Vijai, Joseph and Wendt, Camilla and Wolk, Alicja and Yu, Jyh-Cherng and Zheng, Wei and Ziogas, Argyrios and Ziv, Elad and Dunnig, Alison and Pharaoh, Paul D. P. and Schindler, Detlev and Devilee, Peter and Easton, Douglas F.}, title = {Two truncating variants in FANCC and breast cancer risk}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, organization = {ABCTB Investigators, NBCS Collaborators}, doi = {10.1038/s41598-019-48804-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222838}, year = {2019}, abstract = {Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95\%CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.}, language = {en} } @article{MerzenichBaakenSchmidtetal.2022, author = {Merzenich, Hiltrud and Baaken, Dan and Schmidt, Marcus and Bekes, Inga and Schwentner, Lukas and Janni, Wolfgang and Woeckel, Achim and Bartkowiak, Detlef and Wiegel, Thomas and Blettner, Maria and Wollschl{\"a}ger, Daniel and Schmidberger, Heinz}, title = {Cardiac late effects after modern 3D-conformal radiotherapy in breast cancer patients: a retrospective cohort study in Germany (ESCaRa)}, series = {Breast Cancer Research and Treatment}, volume = {191}, journal = {Breast Cancer Research and Treatment}, number = {1}, issn = {0167-6806}, doi = {10.1007/s10549-021-06412-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-308606}, pages = {147-157}, year = {2022}, abstract = {Purpose Radiotherapy (RT) was identified as a risk factor for long-term cardiac effects in breast cancer patients treated until the 1990s. However, modern techniques reduce radiation exposure of the heart, but some exposure remains unavoidable. In a retrospective cohort study, we investigated cardiac mortality and morbidity of breast cancer survivors treated with recent RT in Germany. Methods A total of 11,982 breast cancer patients treated between 1998 and 2008 were included. A mortality follow-up was conducted until 06/2018. In order to assess cardiac morbidity occurring after breast cancer treatment, a questionnaire was sent out in 2014 and 2019. The effect of breast cancer laterality on cardiac mortality and morbidity was investigated as a proxy for radiation exposure. We used Cox Proportional Hazards regression analysis, taking potential confounders into account. Results After a median follow-up time of 11.1 years, there was no significant association of tumor laterality with cardiac mortality in irradiated patients (hazard ratio (HR) for left-sided versus right-sided tumor 1.09; 95\% confidence interval (CI) 0.85-1.41). Furthermore, tumor laterality was not identified as a significant risk factor for cardiac morbidity (HR = 1.05; 95\%CI 0.88-1.25). Conclusions Even though RT for left-sided breast cancer on average incurs higher radiation dose to the heart than RT for right-sided tumors, we found no evidence that laterality is a strong risk factor for cardiac disease after contemporary RT. However, larger sample sizes, longer follow-up, detailed information on individual risk factors and heart dose are needed to assess clinically manifest late effects of current cancer therapy.}, language = {en} } @article{FlorenvonRintelenHerbertetal.2020, author = {Floren, Andreas and von Rintelen, Thomas and Herbert, Paul D. N. and de Araujo, Bruno Cancian and Schmidt, Stefan and Balke, Michael and Narakusumo, Raden Pramesa and Peggie, Djunijanti and Ubaidillah, Rosichon and von Rintelen, Kristina and M{\"u}ller, Tobias}, title = {Integrative ecological and molecular analysis indicate high diversity and strict elevational separation of canopy beetles in tropical mountain forests}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, doi = {10.1038/s41598-020-73519-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230565}, year = {2020}, abstract = {Tropical mountain forests contribute disproportionately to terrestrial biodiversity but little is known about insect diversity in the canopy and how it is distributed between tree species. We sampled tree-specific arthropod communities from 28 trees by canopy fogging and analysed beetle communities which were first morphotyped and then identified by their DNA barcodes. Our results show that communities from forests at 1100 and 1700 m a.s.l. are almost completely distinct. Diversity was much lower in the upper forest while community structure changed from many rare, less abundant species to communities with a pronounced dominance structure. We also found significantly higher beta-diversity between trees at the lower than higher elevation forest where community similarity was high. Comparisons on tree species found at both elevations reinforced these results. There was little species overlap between sites indicating limited elevational ranges. Furthermore, we exploited the advantage of DNA barcodes to patterns of haplotype diversity in some of the commoner species. Our results support the advantage of fogging and DNA barcodes for community studies and underline the need for comprehensive research aimed at the preservation of these last remaining pristine forests.}, language = {en} } @article{OttoKastnerSchmidtetal.2022, author = {Otto, Christoph and Kastner, Carolin and Schmidt, Stefanie and Uttinger, Konstantin and Baluapuri, Apoorva and Denk, Sarah and Rosenfeldt, Mathias T. and Rosenwald, Andreas and Roehrig, Florian and Ade, Carsten P. and Schuelein-Voelk, Christina and Diefenbacher, Markus E. and Germer, Christoph-Thomas and Wolf, Elmar and Eilers, Martin and Wiegering, Armin}, title = {RNA polymerase I inhibition induces terminal differentiation, growth arrest, and vulnerability to senolytics in colorectal cancer cells}, series = {Molecular Oncology}, volume = {16}, journal = {Molecular Oncology}, number = {15}, doi = {10.1002/1878-0261.13265}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312806}, pages = {2788-2809}, year = {2022}, abstract = {Ribosomal biogenesis and protein synthesis are deregulated in most cancers, suggesting that interfering with translation machinery may hold significant therapeutic potential. Here, we show that loss of the tumor suppressor adenomatous polyposis coli (APC), which constitutes the initiating event in the adenoma carcinoma sequence for colorectal cancer (CRC), induces the expression of RNA polymerase I (RNAPOL1) transcription machinery, and subsequently upregulates ribosomal DNA (rDNA) transcription. Targeting RNAPOL1 with a specific inhibitor, CX5461, disrupts nucleolar integrity, and induces a disbalance of ribosomal proteins. Surprisingly, CX5461-induced growth arrest is irreversible and exhibits features of senescence and terminal differentiation. Mechanistically, CX5461 promotes differentiation in an MYC-interacting zinc-finger protein 1 (MIZ1)- and retinoblastoma protein (Rb)-dependent manner. In addition, the inhibition of RNAPOL1 renders CRC cells vulnerable towards senolytic agents. We validated this therapeutic effect of CX5461 in murine- and patient-derived organoids, and in a xenograft mouse model. These results show that targeting ribosomal biogenesis together with targeting the consecutive, senescent phenotype using approved drugs is a new therapeutic approach, which can rapidly be transferred from bench to bedside.}, language = {en} } @article{MilaneseMendePaolietal.2019, author = {Milanese, Alessio and Mende, Daniel R and Paoli, Lucas and Salazar, Guillem and Ruscheweyh, Hans-Joachim and Cuenca, Miguelangel and Hingamp, Pascal and Alves, Renato and Costea, Paul I and Coelho, Luis Pedro and Schmidt, Thomas S. B. and Almeida, Alexandre and Mitchell, Alex L and Finn, Robert D. and Huerta-Cepas, Jaime and Bork, Peer and Zeller, Georg and Sunagawa, Shinichi}, title = {Microbial abundance, activity and population genomic profiling with mOTUs2}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-08844-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224089}, year = {2019}, abstract = {Metagenomic sequencing has greatly improved our ability to profile the composition of environmental and host-associated microbial communities. However, the dependency of most methods on reference genomes, which are currently unavailable for a substantial fraction of microbial species, introduces estimation biases. We present an updated and functionally extended tool based on universal (i.e., reference-independent), phylogenetic marker gene (MG)-based operational taxonomic units (mOTUs) enabling the profiling of >7700 microbial species. As more than 30\% of them could not previously be quantified at this taxonomic resolution, relative abundance estimates based on mOTUs are more accurate compared to other methods. As a new feature, we show that mOTUs, which are based on essential housekeeping genes, are demonstrably well-suited for quantification of basal transcriptional activity of community members. Furthermore, single nucleotide variation profiles estimated using mOTUs reflect those from whole genomes, which allows for comparing microbial strain populations (e.g., across different human body sites).}, language = {en} } @article{HaukeHorvathGrossetal.2018, author = {Hauke, Jan and Horvath, Judit and Groß, Eva and Gehrig, Andrea and Honisch, Ellen and Hackmann, Karl and Schmidt, Gunnar and Arnold, Norbert and Faust, Ulrike and Sutter, Christian and Hentschel, Julia and Wang-Gohrke, Shan and Smogavec, Mateja and Weber, Bernhard H. F. and Weber-Lassalle, Nana and Weber-Lassalle, Konstantin and Borde, Julika and Ernst, Corinna and Altm{\"u}ller, Janine and Volk, Alexander E. and Thiele, Holger and H{\"u}bbel, Verena and N{\"u}rnberg, Peter and Keupp, Katharina and Versmold, Beatrix and Pohl, Esther and Kubisch, Christian and Grill, Sabine and Paul, Victoria and Herold, Natalie and Lichey, Nadine and Rhiem, Kerstin and Ditsch, Nina and Ruckert, Christian and Wappenschmidt, Barbara and Auber, Bernd and Rump, Andreas and Niederacher, Dieter and Haaf, Thomas and Ramser, Juliane and Dworniczak, Bernd and Engel, Christoph and Meindl, Alfons and Schmutzler, Rita K. and Hahnen, Eric}, title = {Gene panel testing of 5589 BRCA1/2-negative index patients with breast cancer in a routine diagnostic setting: results of the German Consortium for Hereditary Breast and Ovarian Cancer}, series = {Cancer Medicine}, journal = {Cancer Medicine}, doi = {10.1002/cam4.1376}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227902}, pages = {1349-1358}, year = {2018}, abstract = {The prevalence of germ line mutations in non-BRCA1/2 genes associated with hereditary breast cancer (BC) is low, and the role of some of these genes in BC predisposition and pathogenesis is conflicting. In this study, 5589 consecutive BC index patients negative for pathogenic BRCA1/2 mutations and 2189 female controls were screened for germ line mutations in eight cancer predisposition genes (ATM, CDH1, CHEK2, NBN, PALB2, RAD51C, RAD51D, and TP53). All patients met the inclusion criteria of the German Consortium for Hereditary Breast and Ovarian Cancer for germ line testing. The highest mutation prevalence was observed in the CHEK2 gene (2.5\%), followed by ATM (1.5\%) and PALB2 (1.2\%). The mutation prevalence in each of the remaining genes was 0.3\% or lower. Using Exome Aggregation Consortium control data, we confirm significant associations of heterozygous germ line mutations with BC for ATM (OR: 3.63, 95\%CI: 2.67-4.94), CDH1 (OR: 17.04, 95\%CI: 3.54-82), CHEK2 (OR: 2.93, 95\%CI: 2.29-3.75), PALB2 (OR: 9.53, 95\%CI: 6.25-14.51), and TP53 (OR: 7.30, 95\%CI: 1.22-43.68). NBN germ line mutations were not significantly associated with BC risk (OR:1.39, 95\%CI: 0.73-2.64). Due to their low mutation prevalence, the RAD51C and RAD51D genes require further investigation. Compared with control datasets, predicted damaging rare missense variants were significantly more prevalent in CHEK2 and TP53 in BC index patients. Compared with the overall sample, only TP53 mutation carriers show a significantly younger age at first BC diagnosis. We demonstrate a significant association of deleterious variants in the CHEK2, PALB2, and TP53 genes with bilateral BC. Both, ATM and CHEK2, were negatively associated with triple-negative breast cancer (TNBC) and estrogen receptor (ER)-negative tumor phenotypes. A particularly high CHEK2 mutation prevalence (5.2\%) was observed in patients with human epidermal growth factor receptor 2 (HER2)-positive tumors.}, language = {en} }