@article{CoelhoKultimaCosteaetal.2018, author = {Coelho, Luis Pedro and Kultima, Jens Roat and Costea, Paul Igor and Fournier, Coralie and Pan, Yuanlong and Czarnecki-Maulden, Gail and Hayward, Matthew Robert and Forslund, Sofia K. and Schmidt, Thomas Sebastian Benedikt and Descombes, Patrick and Jackson, Janet R. and Li, Qinghong and Bork, Peer}, title = {Similarity of the dog and human gut microbiomes in gene content and response to diet}, series = {Microbiome}, volume = {6}, journal = {Microbiome}, doi = {10.1186/s40168-018-0450-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223177}, year = {2018}, abstract = {Background Gut microbes influence their hosts in many ways, in particular by modulating the impact of diet. These effects have been studied most extensively in humans and mice. In this work, we used whole genome metagenomics to investigate the relationship between the gut metagenomes of dogs, humans, mice, and pigs. Results We present a dog gut microbiome gene catalog containing 1,247,405 genes (based on 129 metagenomes and a total of 1.9 terabasepairs of sequencing data). Based on this catalog and taxonomic abundance profiling, we show that the dog microbiome is closer to the human microbiome than the microbiome of either pigs or mice. To investigate this similarity in terms of response to dietary changes, we report on a randomized intervention with two diets (high-protein/low-carbohydrate vs. lower protein/higher carbohydrate). We show that diet has a large and reproducible effect on the dog microbiome, independent of breed or sex. Moreover, the responses were in agreement with those observed in previous human studies. Conclusions We conclude that findings in dogs may be predictive of human microbiome results. In particular, a novel finding is that overweight or obese dogs experience larger compositional shifts than lean dogs in response to a high-protein diet.}, language = {en} } @article{PinkawaAebersoldBoehmeretal.2021, author = {Pinkawa, Michael and Aebersold, Daniel M. and B{\"o}hmer, Dirk and Flentje, Michael and Ghadjar, Pirus and Schmidt-Hegemann, Nina-Sophie and H{\"o}cht, Stefan and H{\"o}lscher, Tobias and M{\"u}ller, Arndt-Christian and Niehoff, Peter and Sedlmayer, Felix and Wolf, Frank and Zamboglou, Constantinos and Zips, Daniel and Wiegel, Thomas}, title = {Radiotherapy in nodal oligorecurrent prostate cancer}, series = {Strahlentherapie und Onkologie}, volume = {197}, journal = {Strahlentherapie und Onkologie}, number = {7}, issn = {0179-7158}, doi = {10.1007/s00066-021-01778-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-307763}, pages = {575-580}, year = {2021}, abstract = {Objective The current article encompasses a literature review and recommendations for radiotherapy in nodal oligorecurrent prostate cancer. Materials and methods A literature review focused on studies comparing metastasis-directed stereotactic ablative radiotherapy (SABR) vs. external elective nodal radiotherapy (ENRT) and studies analyzing recurrence patterns after local nodal treatment was performed. The DEGRO Prostate Cancer Expert Panel discussed the results and developed treatment recommendations. Results Metastasis-directed radiotherapy results in high local control (often > 90\% within a follow-up of 1-2 years) and can be used to improve progression-free survival or defer androgen deprivation therapy (ADT) according to prospective randomized phase II data. Distant progression after involved-node SABR only occurs within a few months in the majority of patients. ENRT improves metastases-free survival rates with increased toxicity in comparison to SABR according to retrospective comparative studies. The majority of nodal recurrences after initial local treatment of pelvic nodal metastasis are detected within the true pelvis and common iliac vessels. Conclusion ENRT with or without a boost should be preferred to SABR in pelvic nodal recurrences. In oligometastatic prostate cancer with distant (extrapelvic) nodal recurrences, SABR alone can be performed in selected cases. Application of additional systemic treatments should be based on current guidelines, with ADT as first-line treatment for hormone-sensitive prostate cancer. Only in carefully selected patients can radiotherapy be initially used without additional ADT outside of the current standard recommendations. Results of (randomized) prospective studies are needed for definitive recommendations.}, language = {en} } @article{DoerkPeterlongoMannermaaetal.2019, author = {D{\"o}rk, Thilo and Peterlongo, Peter and Mannermaa, Arto and Bolla, Manjeet K. and Wang, Qin and Dennis, Joe and Ahearn, Thomas and Andrulis, Irene L. and Anton-Culver, Hoda and Arndt, Volker and Aronson, Kristan J. and Augustinsson, Annelie and Beane Freeman, Laura E. and Beckmann, Matthias W. and Beeghly-Fadiel, Alicia and Behrens, Sabine and Bermisheva, Marina and Blomqvist, Carl and Bogdanova, Natalia V. and Bojesen, Stig E. and Brauch, Hiltrud and Brenner, Hermann and Burwinkel, Barbara and Canzian, Federico and Chan, Tsun L. and Chang-Claude, Jenny and Chanock, Stephen J. and Choi, Ji-Yeob and Christiansen, Hans and Clarke, Christine L. and Couch, Fergus J. and Czene, Kamila and Daly, Mary B. and dos-Santos-Silva, Isabel and Dwek, Miriam and Eccles, Diana M. and Ekici, Arif B. and Eriksson, Mikael and Evans, D. Gareth and Fasching, Peter A. and Figueroa, Jonine and Flyger, Henrik and Fritschi, Lin and Gabrielson, Marike and Gago-Dominguez, Manuela and Gao, Chi and Gapstur, Susan M. and Garc{\´i}a-Closas, Montserrat and Garc{\´i}a-S{\´a}enz, Jos{\´e} A. and Gaudet, Mia M. and Giles, Graham G. and Goldberg, Mark S. and Goldgar, David E. and Guen{\´e}l, Pascal and Haeberle, Lothar and Haimann, Christopher A. and H{\aa}kansson, Niclas and Hall, Per and Hamann, Ute and Hartman, Mikael and Hauke, Jan and Hein, Alexander and Hillemanns, Peter and Hogervorst, Frans B. L. and Hooning, Maartje J. and Hopper, John L. and Howell, Tony and Huo, Dezheng and Ito, Hidemi and Iwasaki, Motoki and Jakubowska, Anna and Janni, Wolfgang and John, Esther M. and Jung, Audrey and Kaaks, Rudolf and Kang, Daehee and Kapoor, Pooja Middha and Khusnutdinova, Elza and Kim, Sung-Won and Kitahara, Cari M. and Koutros, Stella and Kraft, Peter and Kristensen, Vessela N. and Kwong, Ava and Lambrechts, Diether and Le Marchand, Loic and Li, Jingmei and Lindstr{\"o}m, Sara and Linet, Martha and Lo, Wing-Yee and Long, Jirong and Lophatananon, Artitaya and Lubiński, Jan and Manoochehri, Mehdi and Manoukian, Siranoush and Margolin, Sara and Martinez, Elena and Matsuo, Keitaro and Mavroudis, Dimitris and Meindl, Alfons and Menon, Usha and Milne, Roger L. and Mohd Taib, Nur Aishah and Muir, Kenneth and Mulligan, Anna Marie and Neuhausen, Susan L. and Nevanlinna, Heli and Neven, Patrick and Newman, William G. and Offit, Kenneth and Olopade, Olufunmilayo I. and Olshan, Andrew F. and Olson, Janet E. and Olsson, H{\aa}kan and Park, Sue K. and Park-Simon, Tjoung-Won and Peto, Julian and Plaseska-Karanfilska, Dijana and Pohl-Rescigno, Esther and Presneau, Nadege and Rack, Brigitte and Radice, Paolo and Rashid, Muhammad U. and Rennert, Gad and Rennert, Hedy S. and Romero, Atocha and Ruebner, Matthias and Saloustros, Emmanouil and Schmidt, Marjanka K. and Schmutzler, Rita K. and Schneider, Michael O. and Schoemaker, Minouk J. and Scott, Christopher and Shen, Chen-Yang and Shu, Xiao-Ou and Simard, Jaques and Slager, Susan and Smichkoska, Snezhana and Southey, Melissa C. and Spinelli, John J. and Stone, Jennifer and Surowy, Harald and Swerdlow, Anthony J. and Tamimi, Rulla M. and Tapper, William J. and Teo, Soo H. and Terry, Mary Beth and Toland, Amanda E. and Tollenaar, Rob A. E. M. and Torres, Diana and Torres-Mej{\´i}a, Gabriela and Troester, Melissa A. and Truong, Th{\´e}r{\`e}se and Tsugane, Shoichiro and Untch, Michael and Vachon, Celine M. and van den Ouweland, Ans M. W. and van Veen, Elke M. and Vijai, Joseph and Wendt, Camilla and Wolk, Alicja and Yu, Jyh-Cherng and Zheng, Wei and Ziogas, Argyrios and Ziv, Elad and Dunnig, Alison and Pharaoh, Paul D. P. and Schindler, Detlev and Devilee, Peter and Easton, Douglas F.}, title = {Two truncating variants in FANCC and breast cancer risk}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, organization = {ABCTB Investigators, NBCS Collaborators}, doi = {10.1038/s41598-019-48804-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222838}, year = {2019}, abstract = {Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95\%CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.}, language = {en} } @article{MerzenichBaakenSchmidtetal.2022, author = {Merzenich, Hiltrud and Baaken, Dan and Schmidt, Marcus and Bekes, Inga and Schwentner, Lukas and Janni, Wolfgang and Woeckel, Achim and Bartkowiak, Detlef and Wiegel, Thomas and Blettner, Maria and Wollschl{\"a}ger, Daniel and Schmidberger, Heinz}, title = {Cardiac late effects after modern 3D-conformal radiotherapy in breast cancer patients: a retrospective cohort study in Germany (ESCaRa)}, series = {Breast Cancer Research and Treatment}, volume = {191}, journal = {Breast Cancer Research and Treatment}, number = {1}, issn = {0167-6806}, doi = {10.1007/s10549-021-06412-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-308606}, pages = {147-157}, year = {2022}, abstract = {Purpose Radiotherapy (RT) was identified as a risk factor for long-term cardiac effects in breast cancer patients treated until the 1990s. However, modern techniques reduce radiation exposure of the heart, but some exposure remains unavoidable. In a retrospective cohort study, we investigated cardiac mortality and morbidity of breast cancer survivors treated with recent RT in Germany. Methods A total of 11,982 breast cancer patients treated between 1998 and 2008 were included. A mortality follow-up was conducted until 06/2018. In order to assess cardiac morbidity occurring after breast cancer treatment, a questionnaire was sent out in 2014 and 2019. The effect of breast cancer laterality on cardiac mortality and morbidity was investigated as a proxy for radiation exposure. We used Cox Proportional Hazards regression analysis, taking potential confounders into account. Results After a median follow-up time of 11.1 years, there was no significant association of tumor laterality with cardiac mortality in irradiated patients (hazard ratio (HR) for left-sided versus right-sided tumor 1.09; 95\% confidence interval (CI) 0.85-1.41). Furthermore, tumor laterality was not identified as a significant risk factor for cardiac morbidity (HR = 1.05; 95\%CI 0.88-1.25). Conclusions Even though RT for left-sided breast cancer on average incurs higher radiation dose to the heart than RT for right-sided tumors, we found no evidence that laterality is a strong risk factor for cardiac disease after contemporary RT. However, larger sample sizes, longer follow-up, detailed information on individual risk factors and heart dose are needed to assess clinically manifest late effects of current cancer therapy.}, language = {en} }