@article{ThurnerAugustinBleyetal.2022, author = {Thurner, Annette and Augustin, Anne Marie and Bley, Thorsten Alexander and Kickuth, Ralph}, title = {2D-perfusion angiography for intra-procedural endovascular treatment response assessment in chronic mesenteric ischemia: a feasibility study}, series = {BMC Medical Imaging}, volume = {22}, journal = {BMC Medical Imaging}, doi = {10.1186/s12880-022-00820-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301131}, year = {2022}, abstract = {Background Endovascular revascularization has become the first-line treatment of chronic mesenteric ischemia (CMI). The qualitative visual analysis of digital subtraction angiography (DSA) is dependent on observer experience and prone to interpretation errors. We evaluate the feasibility of 2D-Perfusion Angiography (2D-PA) for objective, quantitative treatment response assessment in CMI. Methods 49 revascularizations in 39 patients with imaging based evidence of mesenteric vascular occlusive disease and clinical signs of CMI were included in this retrospective study. To assess perfusion changes by 2D-PA, DSA-series were post-processed using a dedicated, commercially available software. Regions of interest (ROI) were placed in the pre- and post-stenotic artery segment. In aorto-ostial disease, the inflow ROI was positioned at the mesenteric artery orifice. The ratios outflow to inflow ROI for peak density (PD), time to peak and area-under-the-curve (AUC) were computed and compared pre- and post-interventionally. We graded motion artifacts by means of a four-point scale. Feasibility of 2D-PA and changes of flow parameters were evaluated. Results Motion artifacts due to a mobile vessel location beneath the diaphragm or within the mesenteric root, branch vessel superimposition and inadequate contrast enhancement at the inflow ROI during manually conducted DSA-series via selective catheters owing to steep vessel angulation, necessitated exclusion of 26 measurements from quantitative flow evaluation. The feasibility rate was 47\%. In 23 technically feasible assessments, PD\(_{outflow}\)/PD\(_{inflow}\) increased by 65\% (p < 0.001) and AUC\(_{outflow}\)/AUC\(_{inflow}\) increased by 85\% (p < 0.001). The time to peak density values in the outflow ROI accelerated only minimally without reaching statistical significance. Age, BMI, target vessel (celiac trunk, SMA or IMA), stenosis location (ostial or truncal), calcification severity, plaque composition or the presence of a complex stenosis did not reach statistical significance in their distribution among the feasible and non-feasible group (p > 0.05). Conclusions Compared to other vascular territories and indications, the feasibility of 2D-PA in mesenteric revascularization for CMI was limited. Unfavorable anatomic conditions contributed to a high rate of inconclusive 2D-PA results.}, language = {en} } @article{PetritschPannbeckerWengetal.2021, author = {Petritsch, Bernhard and Pannbecker, Pauline and Weng, Andreas M. and Grunz, Jan-Peter and Veldhoen, Simon and Bley, Thorsten A. and Kosmala, Aleksander}, title = {Split-filter dual-energy CT pulmonary angiography for the diagnosis of acute pulmonary embolism: a study on image quality and radiation dose}, series = {Quantitative Imaging in Medicine and Surgery}, volume = {11}, journal = {Quantitative Imaging in Medicine and Surgery}, number = {5}, doi = {10.21037/qims-20-740}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231456}, pages = {1817-1827}, year = {2021}, abstract = {Background: Computed tomography (CT) pulmonary angiography is the diagnostic reference standard in suspected pulmonary embolism (PE). Favorable results for dual-energy CT (DECT) images have been reported for this condition. Nowadays, dual-energy data acquisition is feasible with different technical options, including a single-source split-filter approach. Therefore, the aim of this retrospective study was to investigate image quality and radiation dose of thoracic split-filter DECT in comparison to conventional single-energy CT in patients with suspected PE. Methods: A total of 110 CT pulmonary angiographies were accomplished either as standard single-energy CT with automatic tube voltage selection (ATVS) (n=58), or as split-filter DECT (n=52). Objective [pulmonary artery CT attenuation, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR)] and subjective image quality [four-point Likert scale; three readers (R)] were compared among the two study groups. Size-specific dose estimates (SSDE), dose-length-product (DLP) and volume CT dose index (CTDIvol) were assessed for radiation dose analysis. Results: Split-filter DECT images yielded 67.7\% higher SNR (27.0 vs. 16.1; P<0.001) and 61.9\% higher CNR (22.5 vs. 13.9; P<0.001) over conventional single-energy images, whereas CT attenuation was significantly lower (344.5 vs. 428.2 HU; P=0.013). Subjective image quality was rated good or excellent in 93.0\%/98.3\%/77.6\% (R1/R2/R3) of the single-energy CT scans, and 84.6\%/82.7\%/80.8\% (R1/R2/R3) of the split-filter DECT scans. SSDE, DLP and CTDIvol were significantly lower for conventional single-energy CT compared to split-filter DECT (all P<0.05), which was associated with 26.7\% higher SSDE. Conclusions: In the diagnostic workup of acute PE, the split-filter allows for dual-energy data acquisition from single-source single-layer CT scanners. The existing opportunity to assess pulmonary "perfusion" based on analysis of iodine distribution maps is associated with higher radiation dose in terms of increased SSDE than conventional single-energy CT with ATVS. Moreover, a proportion of up to 3.8\% non-diagnostic examinations in the current reference standard test for PE is not negligible.}, language = {en} } @article{GietzenKunzLuetkensetal.2022, author = {Gietzen, Carsten Herbert and Kunz, Andreas Steven and Luetkens, Karsten Sebastian and Huflage, Henner and Christopoulos, Georgios and van Schoonhoven, J{\"o}rg and Bley, Thorsten Alexander and Schmitt, Rainer and Grunz, Jan-Peter}, title = {Evaluation of prestyloid recess morphology and ulnar-sided contrast leakage in CT arthrography of the wrist}, series = {BMC Musculoskeletal Disorders}, volume = {23}, journal = {BMC Musculoskeletal Disorders}, number = {1}, doi = {10.1186/s12891-022-05241-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301113}, year = {2022}, abstract = {Background In wrist arthrograms, aberrant contrast material is frequently seen extending into the soft tissue adjacent to the ulnar styloid process. Since the prestyloid recess can mimic contrast leakage in CT arthrography, this study aims to provide a detailed analysis of its morphologic variability, while investigating whether actual ulnar-sided leakage is associated with injuries of the triangular fibrocartilage complex (TFCC). Methods Eighty-six patients with positive wrist trauma history underwent multi-compartment CT arthrography (40 women, median age 44.5 years). Studies were reviewed by two board-certified radiologists, who documented the morphology of the prestyloid recess regarding size, opening type, shape and position, as well as the presence or absence of ulnar-sided contrast leakage. Correlations between leakage and the presence of TFCC injuries were assessed using the mean square contingency coefficient (r\(_{ɸ}\)). Results The most common configuration of the prestyloid recess included a narrow opening (73.26\%; width 2.26 ± 1.43 mm), saccular shape (66.28\%), and palmar position compared to the styloid process (55.81\%). Its mean length and anterior-posterior diameter were 6.89 ± 2.36 and 5.05 ± 1.97 mm, respectively. Ulnar-sided contrast leakage was reported in 29 patients (33.72\%) with a mean extent of 12.30 ± 5.31 mm. Leakage occurred more often in patients with ulnar-sided TFCC injuries (r\(_{ɸ}\) = 0.480; p < 0.001), whereas no association was found for lesions of the central articular disc (r\(_{ɸ}\) = 0.172; p = 0.111). Conclusions Since ulnar-sided contrast leakage is more common in patients with peripheral TFCC injuries, distinction between an atypical configuration of the prestyloid recess and actual leakage is important in CT arthrography of the wrist.}, language = {en} } @article{AugustinWolfschmidtElsaesseretal.2022, author = {Augustin, Anne Marie and Wolfschmidt, Franziska and Els{\"a}sser, Thilo and Sauer, Alexander and Dierks, Alexander and Bley, Thorsten Alexander and Kickuth, Ralph}, title = {Color-coded summation images for the evaluation of blood flow in endovascular aortic dissection fenestration}, series = {BMC Medical Imaging}, volume = {22}, journal = {BMC Medical Imaging}, number = {1}, doi = {10.1186/s12880-022-00744-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301107}, year = {2022}, abstract = {Background To analyze the benefit of color-coded summation images in the assessment of target lumen perfusion in patients with aortic dissection and malperfusion syndrome before and after fluoroscopy-guided aortic fenestration. Methods Between December 2011 and April 2020 25 patients with Stanford type A (n = 13) or type B dissection (n = 12) and malperfusion syndromes were treated with fluoroscopy-guided fenestration of the dissection flap using a re-entry catheter. The procedure was technically successful in 100\% of the cases and included additional iliofemoral stent implantation in four patients. Intraprocedural systolic blood pressure measurements for gradient evaluation were performed in 19 cases. Post-processed color-coded DSA images were obtained from all DSA series before and following fenestration. Differences in time to peak (dTTP) values in the compromised aortic lumen and transluminal systolic blood pressure gradients were analyzed retrospectively. Correlation analysis between dTTP and changes in blood pressure gradients was performed. Results Mean TTP prior to dissection flap fenestration was 6.85 ± 1.35 s. After fenestration, mean TTP decreased significantly to 4.96 ± 0.94 s (p < 0.001). Available systolic blood pressure gradients between the true and the false lumen were reduced by a median of 4.0 mmHg following fenestration (p = 0.031), with significant reductions in Stanford type B dissections (p = 0.013) and minor reductions in type A dissections (p = 0.530). A moderate correlation with no statistical significance was found between dTTP and the difference in systolic blood pressure (r = 0.226; p = 0.351). Conclusions Hemodynamic parameters obtained from color-coded DSA confirmed a significant reduction of TTP values in the aortic target lumen in terms of an improved perfusion in the compromised aortic region. Color-coded DSA might thus be a suitable complementary tool in the assessment of complex vascular patterns prevailing in aortic dissections, especially when blood pressure measurements are not conclusive or feasible.}, language = {en} } @article{WoznickiLaquaAlHajetal.2023, author = {Woznicki, Piotr and Laqua, Fabian Christopher and Al-Haj, Adam and Bley, Thorsten and Baeßler, Bettina}, title = {Addressing challenges in radiomics research: systematic review and repository of open-access cancer imaging datasets}, series = {Insights into Imaging}, volume = {14}, journal = {Insights into Imaging}, issn = {1869-4101}, doi = {10.1186/s13244-023-01556-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357936}, year = {2023}, abstract = {Objectives Open-access cancer imaging datasets have become integral for evaluating novel AI approaches in radiology. However, their use in quantitative analysis with radiomics features presents unique challenges, such as incomplete documentation, low visibility, non-uniform data formats, data inhomogeneity, and complex preprocessing. These issues may cause problems with reproducibility and standardization in radiomics studies. Methods We systematically reviewed imaging datasets with public copyright licenses, published up to March 2023 across four large online cancer imaging archives. We included only datasets with tomographic images (CT, MRI, or PET), segmentations, and clinical annotations, specifically identifying those suitable for radiomics research. Reproducible preprocessing and feature extraction were performed for each dataset to enable their easy reuse. Results We discovered 29 datasets with corresponding segmentations and labels in the form of health outcomes, tumor pathology, staging, imaging-based scores, genetic markers, or repeated imaging. We compiled a repository encompassing 10,354 patients and 49,515 scans. Of the 29 datasets, 15 were licensed under Creative Commons licenses, allowing both non-commercial and commercial usage and redistribution, while others featured custom or restricted licenses. Studies spanned from the early 1990s to 2021, with the majority concluding after 2013. Seven different formats were used for the imaging data. Preprocessing and feature extraction were successfully performed for each dataset. Conclusion RadiomicsHub is a comprehensive public repository with radiomics features derived from a systematic review of public cancer imaging datasets. By converting all datasets to a standardized format and ensuring reproducible and traceable processing, RadiomicsHub addresses key reproducibility and standardization challenges in radiomics. Critical relevance statement This study critically addresses the challenges associated with locating, preprocessing, and extracting quantitative features from open-access datasets, to facilitate more robust and reliable evaluations of radiomics models. Key points - Through a systematic review, we identified 29 cancer imaging datasets suitable for radiomics research. - A public repository with collection overview and radiomics features, encompassing 10,354 patients and 49,515 scans, was compiled. - Most datasets can be shared, used, and built upon freely under a Creative Commons license. - All 29 identified datasets have been converted into a common format to enable reproducible radiomics feature extraction.}, language = {en} } @article{GruschwitzHartungErguenetal.2023, author = {Gruschwitz, Philipp and Hartung, Viktor and Erg{\"u}n, S{\"u}leyman and Peter, Dominik and Lichthardt, Sven and Huflage, Henner and Hendel, Robin and Pannenbecker, Pauline and Augustin, Anne Marie and Kunz, Andreas Steven and Feldle, Philipp and Bley, Thorsten Alexander and Grunz, Jan-Peter}, title = {Comparison of ultrahigh and standard resolution photon-counting CT angiography of the femoral arteries in a continuously perfused in vitro model}, series = {European Radiology Experimental}, volume = {7}, journal = {European Radiology Experimental}, doi = {10.1186/s41747-023-00398-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357905}, year = {2023}, abstract = {Background With the emergence of photon-counting CT, ultrahigh-resolution (UHR) imaging can be performed without dose penalty. This study aims to directly compare the image quality of UHR and standard resolution (SR) scan mode in femoral artery angiographies. Methods After establishing continuous extracorporeal perfusion in four fresh-frozen cadaveric specimens, photon-counting CT angiographies were performed with a radiation dose of 5 mGy and tube voltage of 120 kV in both SR and UHR mode. Images were reconstructed with dedicated convolution kernels (soft: Body-vascular (Bv)48; sharp: Bv60; ultrasharp: Bv76). Six radiologists evaluated the image quality by means of a pairwise forced-choice comparison tool. Kendall's concordance coefficient (W) was calculated to quantify interrater agreement. Image quality was further assessed by measuring intraluminal attenuation and image noise as well as by calculating signal-to-noise ratio (SNR) and contrast-to-noise ratios (CNR). Results UHR yielded lower noise than SR for identical reconstructions with kernels ≥ Bv60 (p < 0.001). UHR scans exhibited lower intraluminal attenuation compared to SR (Bv60: 406.4 ± 25.1 versus 418.1 ± 30.1 HU; p < 0.001). Irrespective of scan mode, SNR and CNR decreased while noise increased with sharper kernels but UHR scans were objectively superior to SR nonetheless (Bv60: SNR 25.9 ± 6.4 versus 20.9 ± 5.3; CNR 22.7 ± 5.8 versus 18.4 ± 4.8; p < 0.001). Notably, UHR scans were preferred in subjective assessment when images were reconstructed with the ultrasharp Bv76 kernel, whereas SR was rated superior for Bv60. Interrater agreement was high (W = 0.935). Conclusions Combinations of UHR scan mode and ultrasharp convolution kernel are able to exploit the full image quality potential in photon-counting CT angiography of the femoral arteries. Relevance statement The UHR scan mode offers improved image quality and may increase diagnostic accuracy in CT angiography of the peripheral arterial runoff when optimized reconstruction parameters are chosen. Key points • UHR photon-counting CT improves image quality in combination with ultrasharp convolution kernels. • UHR datasets display lower image noise compared with identically reconstructed standard resolution scans. • Scans in UHR mode show decreased intraluminal attenuation compared with standard resolution imaging.}, language = {en} } @article{GruschwitzHartungKleefeldtetal.2023, author = {Gruschwitz, Philipp and Hartung, Viktor and Kleefeldt, Florian and Peter, Dominik and Lichthardt, Sven and Huflage, Henner and Grunz, Jan-Peter and Augustin, Anne Marie and Erg{\"u}n, S{\"u}leyman and Bley, Thorsten Alexander and Petritsch, Bernhard}, title = {Continuous extracorporeal femoral perfusion model for intravascular ultrasound, computed tomography and digital subtraction angiography}, series = {PLoS One}, volume = {18}, journal = {PLoS One}, number = {5}, issn = {1932-6203}, doi = {10.1371/journal.pone.0285810}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350136}, year = {2023}, abstract = {Objectives We developed a novel human cadaveric perfusion model with continuous extracorporeal femoral perfusion suitable for performing intra-individual comparison studies, training of interventional procedures and preclinical testing of endovascular devices. Objective of this study was to introduce the techniques and evaluate the feasibility for realistic computed tomography angiography (CTA), digital subtraction angiography (DSA) including vascular interventions, and intravascular ultrasound (IVUS). Methods The establishment of the extracorporeal perfusion was attempted using one formalin-fixed and five fresh-frozen human cadavers. In all specimens, the common femoral and popliteal arteries were prepared, introducer sheaths inserted, and perfusion established by a peristaltic pump. Subsequently, we performed CTA and bilateral DSA in five cadavers and IVUS on both legs of four donors. Examination time without unintentional interruption was measured both with and without non-contrast planning CT. Percutaneous transluminal angioplasty and stenting was performed by two interventional radiologists on nine extremities (five donors) using a broad spectrum of different intravascular devices. Results The perfusion of the upper leg arteries was successfully established in all fresh-frozen but not in the formalin-fixed cadaver. The experimental setup generated a stable circulation in each procedure (ten upper legs) for a period of more than six hours. Images acquired with CT, DSA and IVUS offered a realistic impression and enabled the sufficient visualization of all examined vessel segments. Arterial cannulating, percutaneous transluminal angioplasty as well as stent deployment were feasible in a way that is comparable to a vascular intervention in vivo. The perfusion model allowed for introduction and testing of previously not used devices. Conclusions The continuous femoral perfusion model can be established with moderate effort, works stable, and is utilizable for medical imaging of the peripheral arterial system using CTA, DSA and IVUS. Therefore, it appears suitable for research studies, developing skills in interventional procedures and testing of new or unfamiliar vascular devices.}, language = {en} } @article{GrunzKunzBaumannetal.2023, author = {Grunz, Jan-Peter and Kunz, Andreas Steven and Baumann, Freerk T. and Hasenclever, Dirk and Sieren, Malte Maria and Heldmann, Stefan and Bley, Thorsten Alexander and Einsele, Hermann and Knop, Stefan and Jundt, Franziska}, title = {Assessing osteolytic lesion size on sequential CT scans is a reliable study endpoint for bone remineralization in newly diagnosed multiple myeloma}, series = {Cancers}, volume = {15}, journal = {Cancers}, number = {15}, issn = {2072-6694}, doi = {10.3390/cancers15154008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-362526}, year = {2023}, abstract = {Multiple myeloma (MM) frequently induces persisting osteolytic manifestations despite hematologic treatment response. This study aimed to establish a biometrically valid study endpoint for bone remineralization through quantitative and qualitative analyses in sequential CT scans. Twenty patients (seven women, 58 ± 8 years) with newly diagnosed MM received standardized induction therapy comprising the anti-SLAMF7 antibody elotuzumab, carfilzomib, lenalidomide, and dexamethasone (E-KRd). All patients underwent whole-body low-dose CT scans before and after six cycles of E-KRd. Two radiologists independently recorded osteolytic lesion sizes, as well as the presence of cortical destruction, pathologic fractures, rim and trabecular sclerosis. Bland-Altman analyses and Krippendorff's α were employed to assess inter-reader reliability, which was high for lesion size measurement (standard error 1.2 mm) and all qualitative criteria assessed (α ≥ 0.74). After six cycles of E-KRd induction, osteolytic lesion size decreased by 22\% (p \< 0.001). While lesion size response did not correlate with the initial lesion size at baseline imaging (Pearson's r = 0.144), logistic regression analysis revealed that the majority of responding osteolyses exhibited trabecular sclerosis (p \< 0.001). The sum of osteolytic lesion sizes on sequential CT scans defines a reliable study endpoint to characterize bone remineralization. Patient level response is strongly associated with the presence of trabecular sclerosis.}, language = {en} } @article{LuetkensGrunzKunzetal.2023, author = {Luetkens, Karsten Sebastian and Grunz, Jan-Peter and Kunz, Andreas Steven and Huflage, Henner and Weißenberger, Manuel and Hartung, Viktor and Patzer, Theresa Sophie and Gruschwitz, Philipp and Erg{\"u}n, S{\"u}leyman and Bley, Thorsten Alexander and Feldle, Philipp}, title = {Ultra-high-resolution photon-counting detector CT arthrography of the ankle: a feasibility study}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {13}, issn = {2075-4418}, doi = {10.3390/diagnostics13132201}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-362622}, year = {2023}, abstract = {This study was designed to investigate the image quality of ultra-high-resolution ankle arthrography employing a photon-counting detector CT. Bilateral arthrograms were acquired in four cadaveric specimens with full-dose (10 mGy) and low-dose (3 mGy) scan protocols. Three convolution kernels with different spatial frequencies were utilized for image reconstruction (ρ\(_{50}\); Br98: 39.0, Br84: 22.6, Br76: 16.5 lp/cm). Seven radiologists subjectively assessed the image quality regarding the depiction of bone, hyaline cartilage, and ligaments. An additional quantitative assessment comprised the measurement of noise and the computation of contrast-to-noise ratios (CNR). While an optimal depiction of bone tissue was achieved with the ultra-sharp Br98 kernel (S ≤ 0.043), the visualization of cartilage improved with lower modulation transfer functions at each dose level (p ≤ 0.014). The interrater reliability ranged from good to excellent for all assessed tissues (intraclass correlation coefficient ≥ 0.805). The noise levels in subcutaneous fat decreased with reduced spatial frequency (p \< 0.001). Notably, the low-dose Br76 matched the CNR of the full-dose Br84 (p 0.999) and superseded Br98 (p \< 0.001) in all tissues. Based on the reported results, a photon-counting detector CT arthrography of the ankle with an ultra-high-resolution collimation offers stellar image quality and tissue assessability, improving the evaluation of miniscule anatomical structures. While bone depiction was superior in combination with an ultra-sharp convolution kernel, soft tissue evaluation benefited from employing a lower spatial frequency.}, language = {en} } @article{ElsnerKunzWagneretal.2023, author = {Elsner, Clara and Kunz, Andreas Steven and Wagner, Nicole and Huflage, Henner and H{\"u}bner, Stefan and Luetkens, Karsten Sebastian and Bley, Thorsten Alexander and Schmitt, Rainer and Erg{\"u}n, S{\"u}leyman and Grunz, Jan-Peter}, title = {MRI-based evaluation of the flexor digitorum superficialis anatomy: investigating the prevalence and morphometry of the "chiasma antebrachii"}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {14}, issn = {2075-4418}, doi = {10.3390/diagnostics13142406}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-362631}, year = {2023}, abstract = {Recent dissection studies resulted in the introduction of the term "chiasma antebrachii", which represents an intersection of the flexor digitorum superficialis (FDS) tendons for digits 2 and 3 in the distal third of the forearm. This retrospective investigation aimed to provide an MRI-based morphologic analysis of the chiasma antebrachii. In 89 patients (41 women, 39.3 ± 21.3 years), MRI examinations of the forearm (2010-2021) were reviewed by two radiologists, who evaluated all studies for the presence and length of the chiasma as well as its distance from the distal radioulnar and elbow joint. The chiasma antebrachii was identified in the distal third of the forearm in 88 patients (98.9\%), while one intersection was located more proximally in the middle part. The chiasma had a median length of 28 mm (interquartile range: 24-35 mm). Its distances to the distal radioulnar and elbow joint were 16 mm (8-25 mm) and 215 mm (187-227 mm), respectively. T1-weighted post-contrast sequences were found to be superior to T2- or proton-density-weighted sequences in 71 cases (79.8\%). To conclude, the chiasma antebrachii is part of the standard FDS anatomy. Knowledge of its morphology is important, e.g., in targeted injections of therapeutics or reconstructive surgery.}, language = {en} }