@article{TianeSchepersRombautetal.2019, author = {Tiane, Assia and Schepers, Melissa and Rombaut, Ben and Hupperts, Raymond and Prickaerts, Jos and Hellings, Niels and van den Hove, Daniel and Vanmierlo, Tim}, title = {From OPC to oligodendrocyte: an epigenetic journey}, series = {Cells}, volume = {8}, journal = {Cells}, number = {10}, issn = {2073-4409}, doi = {10.3390/cells8101236}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193267}, year = {2019}, abstract = {Oligodendrocytes provide metabolic and functional support to neuronal cells, rendering them key players in the functioning of the central nervous system. Oligodendrocytes need to be newly formed from a pool of oligodendrocyte precursor cells (OPCs). The differentiation of OPCs into mature and myelinating cells is a multistep process, tightly controlled by spatiotemporal activation and repression of specific growth and transcription factors. While oligodendrocyte turnover is rather slow under physiological conditions, a disruption in this balanced differentiation process, for example in case of a differentiation block, could have devastating consequences during ageing and in pathological conditions, such as multiple sclerosis. Over the recent years, increasing evidence has shown that epigenetic mechanisms, such as DNA methylation, histone modifications, and microRNAs, are major contributors to OPC differentiation. In this review, we discuss how these epigenetic mechanisms orchestrate and influence oligodendrocyte maturation. These insights are a crucial starting point for studies that aim to identify the contribution of epigenetics in demyelinating diseases and may thus provide new therapeutic targets to induce myelin repair in the long run.}, language = {en} } @article{VitaleZoellerJanschetal.2021, author = {Vitale, Maria Rosaria and Z{\"o}ller, Johanna Eva Maria and Jansch, Charline and Janz, Anna and Edenhofer, Frank and Klopocki, Eva and van den Hove, Daniel and Vanmierlo, Tim and Rivero, Olga and Kasri, Nael Nadif and Ziegler, Georg Christoph and Lesch, Klaus-Peter}, title = {Generation of induced pluripotent stem cell (iPSC) lines carrying a heterozygous (UKWMPi002-A-1) and null mutant knockout (UKWMPi002-A-2) of Cadherin 13 associated with neurodevelopmental disorders using CRISPR/Cas9}, series = {Stem Cell Research}, volume = {51}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2021.102169}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260331}, year = {2021}, abstract = {Fibroblasts isolated from a skin biopsy of a healthy 46-year-old female were infected with Sendai virus containing the Yamanaka factors to produce transgene-free human induced pluripotent stem cells (iPSCs). CRISPR/Cas9 was used to generate isogenic cell lines with a gene dose-dependent deficiency of CDH13, a risk gene associated with neurodevelopmental and psychiatric disorders. Thereby, a heterozygous CDH13 knockout (CDH13\(^{+/-}\)) and a CDH13 null mutant (CDH13\(^{-/-}\)) iPSC line was obtained. All three lines showed expression of pluripotency-associated markers, the ability to differentiate into cells of the three germ layers in vitro, and a normal female karyotype.}, language = {en} }