@article{VermaSteinbacherSchmiedeletal.2016, author = {Verma, Pramod Kumar and Steinbacher, Andreas and Schmiedel, Alexander and Nuernberger, Patrick and Brixner, Tobias}, title = {Excited-state intramolecular proton transfer of 2-acetylindan-1,3-dione studied by ultrafast absorption and fluorescence spectroscopy}, series = {Structural Dynamics}, volume = {3}, journal = {Structural Dynamics}, doi = {10.1063/1.4937363}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181301}, year = {2016}, abstract = {We employ transient absorption from the deep-UV to the visible region and fluorescence upconversion to investigate the photoinduced excited-state intramolecular proton-transfer dynamics in a biologically relevant drug molecule, 2-acetylindan-1,3-dione. The molecule is a ß-diketone which in the electronic ground state exists as exocyclic enol with an intramolecular H-bond. Upon electronic excitation at 300 nm, the first excited state of the exocyclic enol is initially populated, followed by ultrafast proton transfer (≈160 fs) to form the vibrationally hot endocyclic enol. Subsequently, solvent-induced vibrational relaxation takes place (≈10 ps) followed by decay (≈390 ps) to the corresponding ground state.}, language = {en} } @unpublished{LambertVoelkerKochetal.2015, author = {Lambert, Christoph and V{\"o}lker, Sebastian F. and Koch, Federico and Schmiedel, Alexander and Holzapfel, Marco and Humeniuk, Alexander and R{\"o}hr, Merle I. S. and Mitric, Roland and Brixner, Tobias}, title = {Energy Transfer Between Squaraine Polymer Sections: From helix to zig-zag and All the Way Back}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.5b03644}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159607}, year = {2015}, abstract = {Joint experimental and theoretical study of the absorption spectra of squaraine polymers in solution provide evidence that two different conformations are present in solution: a helix and a zig-zag structure. This unique situation allows investigating ultrafast energy transfer processes between different structural segments within a single polymer chain in solution. The understanding of the underlying dynamics is of fundamental importance for the development of novel materials for light-harvesting and optoelectronic applications. We combine here femtosecond transient absorption spectroscopy with time-resolved 2D electronic spectroscopy showing that ultrafast energy transfer within the squaraine polymer chains proceeds from initially excited helix segments to zig-zag segments or vice versa, depending on the solvent as well as on the excitation wavenumber. These observations contrast other conjugated polymers such as MEH-PPV where much slower intrachain energy transfer was reported. The reason for the very fast energy transfer in squaraine polymers is most likely a close matching of the density of states between donor and acceptor polymer segments because of very small reorganization energy in these cyanine-like chromophores.}, language = {en} } @unpublished{HuberPresWittmannetal.2019, author = {Huber, Bernhard and Pres, Sebastian and Wittmann, Emanuel and Dietrich, Lysanne and L{\"u}ttig, Julian and Fersch, Daniel and Krauss, Enno and Friedrich, Daniel and Kern, Johannes and Lisinetskii, Victor and Hensen, Matthias and Hecht, Bert and Bratschitsch, Rudolf and Riedle, Eberhard and Brixner, Tobias}, title = {Space- and time-resolved UV-to-NIR surface spectroscopy and 2D nanoscopy at 1 MHz repetition rate}, issn = {0034-6748}, doi = {10.1063/1.5115322}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191906}, year = {2019}, abstract = {We describe a setup for time-resolved photoemission electron microscopy (TRPEEM) with aberration correction enabling 3 nm spatial resolution and sub-20 fs temporal resolution. The latter is realized by our development of a widely tunable (215-970 nm) noncollinear optical parametric amplifier (NOPA) at 1 MHz repetition rate. We discuss several exemplary applications. Efficient photoemission from plasmonic Au nanoresonators is investigated with phase-coherent pulse pairs from an actively stabilized interferometer. More complex excitation fields are created with a liquid-crystal-based pulse shaper enabling amplitude and phase shaping of NOPA pulses with spectral components from 600 to 800 nm. With this system we demonstrate spectroscopy within a single plasmonic nanoslit resonator by spectral amplitude shaping and investigate the local field dynamics with coherent two-dimensional (2D) spectroscopy at the nanometer length scale ("2D nanoscopy"). We show that the local response varies across a distance as small as 33 nm in our sample. Further, we report two-color pump-probe experiments using two independent NOPA beamlines. We extract local variations of the excited-state dynamics of a monolayered 2D material (WSe2) that we correlate with low-energy electron microscopy (LEEM) and reflectivity (LEER) measurements. Finally, we demonstrate the in-situ sample preparation capabilities for organic thin films and their characterization via spatially resolved electron diffraction and dark-field LEEM.}, language = {en} } @article{SuessWehnerDostaletal.2019, author = {S{\"u}ß, Jasmin and Wehner, Johannes G. and Dost{\´a}l, Jakub and Engel, Volker and Brixner, Tobias}, title = {Mapping of exciton-exciton annihilation in a molecular dimer via fifth-order femtosecond two-dimensional spectroscopy}, series = {Journal of Physical Chemistry Letters}, volume = {150}, journal = {Journal of Physical Chemistry Letters}, number = {10}, doi = {10.1063/1.5086151}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178420}, pages = {104304}, year = {2019}, abstract = {We present a theoretical study on exciton-exciton annihilation (EEA) in a molecular dimer. This process is monitored using a fifth-order coherent two-dimensional (2D) spectroscopy as was recently proposed by Dost{\´a}l et al. [Nat. Commun. 9, 2466 (2018)]. Using an electronic three-level system for each monomer, we analyze the different paths which contribute to the 2D spectrum. The spectrum is determined by two entangled relaxation processes, namely, the EEA and the direct relaxation of higher lying excited states. It is shown that the change of the spectrum as a function of a pulse delay can be linked directly to the presence of the EEA process.}, subject = {Exziton}, language = {en} } @unpublished{SuessWehnerDostaletal.2019, author = {S{\"u}ß, Jasmin and Wehner, Johannes G. and Dost{\´a}l, Jakub and Engel, Volker and Brixner, Tobias}, title = {Mapping of exciton-exciton annihilation in a molecular dimer via fifth-order femtosecond two-dimensional spectroscopy}, series = {Journal of Physical Chemistry Letters}, journal = {Journal of Physical Chemistry Letters}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178482}, year = {2019}, abstract = {We present a theoretical study on exciton-exciton annihilation (EEA) in a molecular dimer. This process is monitored using a fifth-order coherent two-dimensional (2D) spectroscopy as was recently proposed by Dost{\´a}l et al. [Nat. Commun. 9, 2466 (2018)]. Using an electronic three-level system for each monomer, we analyze the different paths which contribute to the 2D spectrum. The spectrum is determined by two entangled relaxation processes, namely, the EEA and the direct relaxation of higher lying excited states. It is shown that the change of the spectrum as a function of a pulse delay can be linked directly to the presence of the EEA process.}, subject = {Exziton}, language = {en} } @unpublished{MuellerDraegerMaetal.2018, author = {M{\"u}ller, Stefan and Draeger, Simon and Ma, Kiaonan and Hensen, Matthias and Kenneweg, Tristan and Pfeiffer, Walter and Brixner, Tobias}, title = {Fluorescence-Detected Two-Quantum and One-Quantum-Two-Quantum 2D Electronic Spectroscopy}, series = {Journal of Physical Chemistry Letters}, journal = {Journal of Physical Chemistry Letters}, doi = {10.1021/acs.jpclett.8b00541}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173468}, year = {2018}, abstract = {We demonstrate two-quantum (2Q) coherent two-dimensional (2D)electronic spectroscopy using a shot-to-shot-modulated pulse shaper and fluorescence detection. Broadband collinear excitation is realized with the supercontinuum output of an argon-filled hollow-core fiber, enabling us to excite multiple transitions simultaneously in the visible range. The 2Q contribution is extracted via a three-pulse sequence with 16-fold phase cycling and simulated employing cresyl violet as a model system. Furthermore, we report the first experimental realization of one-quantum-two-quantum (1Q-2Q) 2D spectroscopy, offering less congested spectra as compared with the 2Q implementation. We avoid scattering artifacts and nonresonant solvent contributions by using fluorescence as the observable. This allows us to extract quantitative information about doubly excited states that agree with literature expectations. The high sensitivity and background-free nature of fluorescence detection allow for a general applicability of this method to many other systems.}, subject = {Fluoreszenz}, language = {en} } @article{HocheSchulzDietrichetal.2019, author = {Hoche, Joscha and Schulz, Alexander and Dietrich, Lysanne Monika and Humeniuk, Alexander and Stolte, Matthias and Schmidt, David and Brixner, Tobias and W{\"u}rthner, Frank and Mitric, Roland}, title = {The origin of the solvent dependence of fluorescence quantum yields in dipolar merocyanine dyes}, series = {Chemical Science}, volume = {10}, journal = {Chemical Science}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198707}, pages = {11013}, year = {2019}, abstract = {Fluorophores with high quantum yields are desired for a variety of applications. Optimization of promising chromophores requires an understanding of the non-radiative decay channels that compete with the emission of photons. We synthesized a new derivative of the famous laser dye 4-dicyanomethylen-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM),i.e., merocyanine 4-(dicyanomethylene)-2-tert-butyl-6-[3-(3-butyl-benzothiazol-2-ylidene)1-propenyl]-4H-pyran (DCBT). We measured fluorescence lifetimes and quantum yields in a variety of solvents and found a trend opposite to the energy gap law.This motivated a theoretical investigation into the possible non-radiative decay channels. We propose that a barrier to a conical intersection exists that is very sensitive to the solvent polarity. The conical intersection is characterized by a twisted geometry which allows a subsequent photoisomerization. Transient absorption measurements confirmed the formation of a photoisomer in unpolar solvents, while the measurements of fluorescence quantum yields at low temperature demonstrated the existence of an activation energy barrier.}, language = {en} } @article{KanalKeiberEcketal.2014, author = {Kanal, Florian and Keiber, Sabine and Eck, Reiner and Brixner, Tobias}, title = {100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump-probe spectroscopy}, doi = {10.1364/OE.22.016965}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112853}, year = {2014}, abstract = {Shot-to-shot broadband detection is common in ultrafast pump-probe spectroscopy. Taking advantage of the intensity correlation of subsequent laser pulses improves the signal-to-noise ratio. Finite data readout times of CCD chips in the employed spectrometer and the maximum available speed of mechanical pump-beam choppers typically limit this approach to lasers with repetition rates of a few kHz. For high-repetition (≥ 100 kHz) systems, one typically averages over a larger number of laser shots leading to inferior signal-to-noise ratios or longer measurement times. Here we demonstrate broadband shot-to-shot detection in transient absorption spectroscopy with a 100-kHz femtosecond laser system. This is made possible using a home-built high-speed chopper with external laser synchronization and a fast CCD line camera. Shot-to-shot detection can reduce the data acquisition time by two orders of magnitude compared to few-kHz lasers while keeping the same signal-to-noise ratio.}, language = {en} } @article{BrixnerPawłowskaGoetzetal.2014, author = {Brixner, Tobias and Pawłowska, Monika and Goetz, Sebastian and Dreher, Christian and Wurdack, Matthias and Krauss, Enno and Razinskas, Gary and Geisler, Peter and Hecht, Bert}, title = {Shaping and spatiotemporal characterization of sub-10-fs pulses focused by a high-NA objective}, doi = {10.1364/OE.22.031496}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111120}, year = {2014}, abstract = {We describe a setup consisting of a 4 f pulse shaper and a microscope with a high-NA objective lens and discuss the spects most relevant for an undistorted spatiotemporal profile of the focused beam. We demonstrate shaper-assisted pulse compression in focus to a sub-10-fs duration using phase-resolved interferometric spectral modulation (PRISM). We introduce a nanostructure-based method for sub-diffraction spatiotemporal characterization of strongly focused pulses. The distortions caused by optical aberrations and space-time coupling from the shaper can be reduced by careful setup design and alignment to about 10 nm in space and 1 fs in time.}, language = {en} } @article{RewitzKeitzlTuchschereretal.2012, author = {Rewitz, Christian and Keitzl, Thomas and Tuchscherer, Philip and Goetz, Sebastian and Geisler, Peter and Razinskas, Gary and Hecht, Bert and Brixner, Tobias}, title = {Spectral-interference microscopy for characterization of functional plasmonic elements}, series = {Optics Express}, journal = {Optics Express}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85922}, year = {2012}, abstract = {Plasmonic modes supported by noble-metal nanostructures offer strong subwavelength electric-field confinement and promise the realization of nanometer-scale integrated optical circuits with well-defined functionality. In order to measure the spectral and spatial response functions of such plasmonic elements, we combine a confocal microscope setup with spectral interferometry detection. The setup, data acquisition, and data evaluation are discussed in detail by means of exemplary experiments involving propagating plasmons transmitted through silver nanowires. By considering and experimentally calibrating any setup-inherent signal delay with an accuracy of 1 fs, we are able to extract correct timing information of propagating plasmons. The method can be applied, e.g., to determine the dispersion and group velocity of propagating plasmons in nanostructures, and can be extended towards the investigation of nonlinear phenomena.}, language = {en} } @article{SteinbacherBubackNuernbergeretal.2012, author = {Steinbacher, Andreas and Buback, Johannes and N{\"u}rnberger, Patrick and Brixner, Tobias}, title = {Precise and rapid detection of optical activity for accumulative femtosecond spectroscopy}, series = {Optics Express}, journal = {Optics Express}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85913}, year = {2012}, abstract = {We present polarimetry, i.e. the detection of optical rotation of light polarization, in a configuration suitable for femtosecond spectroscopy. The polarimeter is based on common-path optical heterodyne interferometry and provides fast and highly sensitive detection of rotatory power. Femtosecond pump and polarimeter probe beams are integrated into a recently developed accumulative technique that further enhances sensitivity with respect to single-pulse methods. The high speed of the polarimeter affords optical rotation detection during the pump-pulse illumination period of a few seconds. We illustrate the concept on the photodissociation of the enantiomers of methyl p-tolyl sulfoxide. The sensitivity of rotatory detection, i.e. the minimum rotation angle that can be measured, is determined experimentally including all noise sources to be 0.10 milli-degrees for a measurement time of only one second and an interaction length of 250 μm. The suitability of the presented setup for femtosecond studies is demonstrated in a non-resonant two-photon photodissociation experiment.}, language = {en} } @article{AeschlimannBauerBayeretal.2012, author = {Aeschlimann, Martin and Bauer, Michael and Bayer, Daniela and Brixner, Tobias and Cunovic, Stefan and Fischer, Alexander and Melchior, Pascal and Pfeiffer, Walter and Rohmer, Martin and Schneider, Christian and Str{\"u}ber, Christian and Tuchscherer, Philip and Voronine, Dimitri V.}, title = {Optimal open-loop near-field control of plasmonic nanostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75256}, year = {2012}, abstract = {Optimal open-loop control, i.e. the application of an analytically derived control rule, is demonstrated for nanooptical excitations using polarization-shaped laser pulses. Optimal spatial near-field localization in gold nanoprisms and excitation switching is realized by applying a shift to the relative phase of the two polarization components. The achieved near-field switching confirms theoretical predictions, proves the applicability of predefined control rules in nanooptical light-matter interaction and reveals local mode interference to be an important control mechanism.}, subject = {Chemie}, language = {en} } @article{ReisererHuangHechtetal.2010, author = {Reiserer, Andreas A. and Huang, Jer-Shing and Hecht, Bert and Brixner, Tobias}, title = {Subwavelength broadband splitters and switches for femtosecond plasmonic signals}, series = {Optics Express}, journal = {Optics Express}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85889}, year = {2010}, abstract = {Numerical simulations and an analytic approach based on transmission line theory are used to design splitters for nano-plasmonic signal processing that allow to arbitrarily adjust the ratio of transmission from an input into two different output arms. By adjusting the geometrical parameters of the structure, either a high bandwidth or a sharp transmission resonance is obtained. Switching between the two arms can be achieved by modulating the effective refractive index of the waveguide. Employing the instantaneous Kerr effect, switching rates in the THz regime are potentially feasible. The suggested devices are of interest for future applications in nanoplasmonic information processing.}, language = {en} } @article{BrixnerKochKullmannetal.2013, author = {Brixner, Tobias and Koch, Federico and Kullmann, Martin and Selig, Ulrike and Nuernberger, Patrick and G{\"o}tz, Daniel C. G. and Bringmann, Gerhard}, title = {Coherent two-dimensional electronic spectroscopy in the Soret band of a chiral porphyrin dimer}, series = {New Journal of Physics}, journal = {New Journal of Physics}, doi = {10.1088/1367-2630/15/2/025006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96139}, year = {2013}, abstract = {Using coherent two-dimensional (2D) electronic spectroscopy in fully noncollinear geometry, we observe the excitonic coupling of β,β'-linked bis[tetraphenylporphyrinato-zinc(II)] on an ultrafast timescale in the excited state. The results for two states in the Soret band originating from an excitonic splitting are explained by population transfer with approximately 100 fs from the energetically higher to the lower excitonic state. This interpretation is consistent with exemplary calculations of 2D spectra for a model four-level system with coupling.}, language = {en} } @article{AeschlimannBrixnerCinchettietal.2017, author = {Aeschlimann, Martin and Brixner, Tobias and Cinchetti, Mirko and Frisch, Benjamin and Hecht, Bert and Hensen, Matthias and Huber, Bernhard and Kramer, Christian and Krauss, Enno and Loeber, Thomas H. and Pfeiffer, Walter and Piecuch, Martin and Thielen, Philip}, title = {Cavity-assisted ultrafast long-range periodic energy transfer between plasmonic nanoantennas}, series = {Light: Science \& Applications}, volume = {6}, journal = {Light: Science \& Applications}, doi = {10.1038/lsa.2017.111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173265}, year = {2017}, abstract = {Radiationless energy transfer is at the core of diverse phenomena, such as light harvesting in photosynthesis\(^1\), energy-transfer-based microspectroscopies\(^2\), nanoscale quantum entanglement\(^3\) and photonic-mode hybridization\(^4\). Typically, the transfer is efficient only for separations that are much shorter than the diffraction limit. This hampers its application in optical communication and quantum information processing, which require spatially selective addressing. Here, we demonstrate highly efficient radiationless coherent energy transfer over a distance of twice the excitation wavelength by combining localized and delocalized\(^5\) plasmonic modes. Analogous to the Tavis-Cummings model, two whispering-gallery-mode antennas\(^6\) placed in the foci of an elliptical plasmonic cavity\(^7\) fabricated from single-crystal gold plates act as a pair of oscillators coupled to a common cavity mode. Time-resolved two-photon photoemission electron microscopy (TR 2P-PEEM) reveals an ultrafast long-range periodic energy transfer in accordance with the simulations. Our observations open perspectives for the optimization and tailoring of mesoscopic energy transfer and long-range quantum emitter coupling.}, language = {en} } @article{MuellerLuettigMalyetal.2019, author = {Mueller, Stefan and L{\"u}ttig, Julian and Mal{\´y}, Pavel and Ji, Lei and Han, Jie and Moos, Michael and Marder, Todd B. and Bunz, Uwe H. F. and Dreuw, Andreas and Lambert, Christoph and Brixner, Tobias}, title = {Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-12602-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202529}, pages = {4735}, year = {2019}, abstract = {Coherent two-dimensional spectroscopy is a powerful tool for probing ultrafast quantum dynamics in complex systems. Several variants offer different types of information but typically require distinct beam geometries. Here we introduce population-based three-dimensional (3D) electronic spectroscopy and demonstrate the extraction of all fourth- and multiple sixth-order nonlinear signal contributions by employing 125-fold (1⨯5⨯5⨯5) phase cycling of a four-pulse sequence. Utilizing fluorescence detection and shot-to-shot pulse shaping in single-beam geometry, we obtain various 3D spectra of the dianion of TIPS-tetraazapentacene, a fluorophore with limited stability at ambient conditions. From this, we recover previously unknown characteristics of its electronic two-photon state. Rephasing and nonrephasing sixth-order contributions are measured without additional phasing that hampered previous attempts using noncollinear geometries. We systematically resolve all nonlinear signals from the same dataset that can be acquired in 8 min. The approach is generalizable to other incoherent observables such as external photoelectrons, photocurrents, or photoions.}, language = {en} } @unpublished{FerschMalyRueheetal.2023, author = {Fersch, Daniel and Mal{\´y}, Pavel and R{\"u}he, Jessica and Lisinetskii, Victor and Hensen, Matthias and W{\"u}rthner, Frank and Brixner, Tobias}, title = {Single-Molecule Ultrafast Fluorescence-Detected Pump-Probe Microscopy}, doi = {10.25972/OPUS-31348}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313485}, year = {2023}, abstract = {We introduce fluorescence-detected pump-probe microscopy by combining a wavelength-tunable ultrafast laser with a confocal scanning fluorescence microscope, enabling access to the femtosecond time scale on the micrometer spatial scale. In addition, we obtain spectral information from Fourier transformation over excitation pulse-pair time delays. We demonstrate this new approach on a model system of a terrylene bisimide (TBI) dye embedded in a PMMA matrix and acquire the linear excitation spectrum as well as time-dependent pump-probe spectra simultaneously. We then push the technique towards single TBI molecules and analyze the statistical distribution of their excitation spectra. Furthermore, we demonstrate the ultrafast transient evolution of several individual molecules, highlighting their different behavior in contrast to the ensemble due to their individual local environment. By correlating the linear and nonlinear spectra, we assess the effect of the molecular environment on the excited-state energy.}, subject = {Fluoreszenz}, language = {en} } @article{RoedingBrixner2018, author = {Roeding, Sebastian and Brixner, Tobias}, title = {Coherent two-dimensional electronic mass spectrometry}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, number = {2519}, doi = {10.1038/s41467-018-04927-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226458}, pages = {1-9}, year = {2018}, abstract = {Coherent two-dimensional (2D) optical spectroscopy has revolutionized our ability to probe many types of couplings and ultrafast dynamics in complex quantum systems. The dynamics and function of any quantum system strongly depend on couplings to the environment. Thus, studying coherent interactions for different environments remains a topic of tremendous interest. Here we introduce coherent 2D electronic mass spectrometry that allows 2D measurements on effusive molecular beams and thus on quantum systems with minimum system-bath interaction and employ this to identify the major ionization pathway of 3d Rydberg states in NO2. Furthermore, we present 2D spectra of multiphoton ionization, disclosing distinct differences in the nonlinear response functions leading to the ionization products. We also realize the equivalent of spectrally resolved transient-absorption measurements without the necessity for acquiring weak absorption changes. Using time-of-flight detection introduces cations as an observable, enabling the 2D spectroscopic study on isolated systems of photophysical and photochemical reactions.}, language = {en} } @article{MalyBrixner2021, author = {Mal{\´y}, Pavel and Brixner, Tobias}, title = {Fluorescence-Detected Pump-Probe Spectroscopy}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {34}, doi = {10.1002/anie.202102901}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244811}, pages = {18867 -- 18875}, year = {2021}, abstract = {We introduce a new approach to transient spectroscopy, fluorescence-detected pump-probe (F-PP) spectroscopy, that overcomes several limitations of traditional PP. F-PP suppresses excited-state absorption, provides background-free detection, removes artifacts resulting from pump-pulse scattering, from non-resonant solvent response, or from coherent pulse overlap, and allows unique extraction of excited-state dynamics under certain conditions. Despite incoherent detection, time resolution of F-PP is given by the duration of the laser pulses, independent of the fluorescence lifetime. We describe the working principle of F-PP and provide its theoretical description. Then we illustrate specific features of F-PP by direct comparison with PP, theoretically and experimentally. For this purpose, we investigate, with both techniques, a molecular squaraine heterodimer, core-shell CdSe/ZnS quantum dots, and fluorescent protein mCherry. F-PP is broadly applicable to chemical systems in various environments and in different spectral regimes.}, language = {en} } @unpublished{DietzschJayachandranMuelleretal.2023, author = {Dietzsch, Julia and Jayachandran, Ajay and Mueller, Stefan and H{\"o}bartner, Claudia and Brixner, Tobias}, title = {Excitonic coupling of RNA-templated merocyanine dimer studied by higher-order transient absorption spectroscopy}, series = {Chemical Communications}, journal = {Chemical Communications}, edition = {submitted version}, doi = {10.1039/D3CC02024J}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-327772}, year = {2023}, abstract = {We report the synthesis and spectroscopic analysis of RNA containing the barbituric acid merocyanine rBAM2 as a nucleobase surrogate. Incorporation into RNA strands by solid-phase synthesis leads to fluorescence enhancement compared to the free chromophore. In addition, linear absorption studies show the formation of an excitonically coupled H-type dimer in the hybridized duplex. Ultrafast third- and fifth-order transient absorption spectroscopy of this non-fluorescent dimer suggests immediate (sub-200 fs) exciton transfer and annihilation due to the proximity of the rBAM2 units.}, language = {en} } @article{LiShanRupprechtetal.2022, author = {Li, Donghai and Shan, Hangyong and Rupprecht, Christoph and Knopf, Heiko and Watanabe, Kenji and Taniguchi, Takashi and Qin, Ying and Tongay, Sefaattin and Nuß, Matthias and Schr{\"o}der, Sven and Eilenberger, Falk and H{\"o}fling, Sven and Schneider, Christian and Brixner, Tobias}, title = {Hybridized exciton-photon-phonon states in a transition-metal-dichalcogenide van-der-Waals heterostructure microcavity}, series = {Physical Review Letters}, journal = {Physical Review Letters}, edition = {accepted version}, issn = {1079-7114}, doi = {10.1103/PhysRevLett.128.087401}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-351303}, year = {2022}, abstract = {Excitons in atomically thin transition-metal dichalcogenides (TMDs) have been established as an attractive platform to explore polaritonic physics, owing to their enormous binding energies and giant oscillator strength. Basic spectral features of exciton polaritons in TMD microcavities, thus far, were conventionally explained via two-coupled-oscillator models. This ignores, however, the impact of phonons on the polariton energy structure. Here we establish and quantify the threefold coupling between excitons, cavity photons, and phonons. For this purpose, we employ energy-momentum-resolved photoluminescence and spatially resolved coherent two-dimensional spectroscopy to investigate the spectral properties of a high-quality-factor microcavity with an embedded WSe\(_2\) van-der-Waals heterostructure at room temperature. Our approach reveals a rich multi-branch structure which thus far has not been captured in previous experiments. Simulation of the data reveals hybridized exciton-photon-phonon states, providing new physical insight into the exciton polariton system based on layered TMDs.}, language = {en} }