@article{StaigerCadotKooteretal.2012, author = {Staiger, Christine and Cadot, Sidney and Kooter, Raul and Dittrich, Marcus and M{\"u}ller, Tobias and Klau, Gunnar W. and Wessels, Lodewyk F. A.}, title = {A Critical Evaluation of Network and Pathway-Based Classifiers for Outcome Prediction in Breast Cancer}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {4}, doi = {10.1371/journal.pone.0034796}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131323}, pages = {e34796}, year = {2012}, abstract = {Recently, several classifiers that combine primary tumor data, like gene expression data, and secondary data sources, such as protein-protein interaction networks, have been proposed for predicting outcome in breast cancer. In these approaches, new composite features are typically constructed by aggregating the expression levels of several genes. The secondary data sources are employed to guide this aggregation. Although many studies claim that these approaches improve classification performance over single genes classifiers, the gain in performance is difficult to assess. This stems mainly from the fact that different breast cancer data sets and validation procedures are employed to assess the performance. Here we address these issues by employing a large cohort of six breast cancer data sets as benchmark set and by performing an unbiased evaluation of the classification accuracies of the different approaches. Contrary to previous claims, we find that composite feature classifiers do not outperform simple single genes classifiers. We investigate the effect of (1) the number of selected features; (2) the specific gene set from which features are selected; (3) the size of the training set and (4) the heterogeneity of the data set on the performance of composite feature and single genes classifiers. Strikingly, we find that randomization of secondary data sources, which destroys all biological information in these sources, does not result in a deterioration in performance of composite feature classifiers. Finally, we show that when a proper correction for gene set size is performed, the stability of single genes sets is similar to the stability of composite feature sets. Based on these results there is currently no reason to prefer prognostic classifiers based on composite features over single genes classifiers for predicting outcome in breast cancer.}, language = {en} } @article{MaierhoferFlunkertDittrichetal.2017, author = {Maierhofer, Anna and Flunkert, Julia and Dittrich, Marcus and M{\"u}ller, Tobias and Schindler, Detlev and Nanda, Indrajit and Haaf, Thomas}, title = {Analysis of global DNA methylation changes in primary human fibroblasts in the early phase following X-ray irradiation}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0177442}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170895}, pages = {e0177442}, year = {2017}, abstract = {Epigenetic alterations may contribute to the generation of cancer cells in a multi-step process of tumorigenesis following irradiation of normal body cells. Primary human fibroblasts with intact cell cycle checkpoints were used as a model to test whether X-ray irradiation with 2 and 4 Gray induces direct epigenetic effects (within the first cell cycle) in the exposed cells. ELISA-based fluorometric assays were consistent with slightly reduced global DNA methylation and hydroxymethylation, however the observed between-group differences were usually not significant. Similarly, bisulfite pyrosequencing of interspersed LINE-1 repeats and centromeric α-satellite DNA did not detect significant methylation differences between irradiated and non-irradiated cultures. Methylation of interspersed ALU repeats appeared to be slightly increased (one percentage point; p = 0.01) at 6 h after irradiation with 4 Gy. Single-cell analysis showed comparable variations in repeat methylation among individual cells in both irradiated and control cultures. Radiation-induced changes in global repeat methylation, if any, were much smaller than methylation variation between different fibroblast strains. Interestingly, α-satellite DNA methylation positively correlated with gestational age. Finally, 450K methylation arrays mainly targeting genes and CpG islands were used for global DNA methylation analysis. There were no detectable methylation differences in genic (promoter, 5' UTR, first exon, gene body, 3' UTR) and intergenic regions between irradiated and control fibroblast cultures. Although we cannot exclude minor effects, i.e. on individual CpG sites, collectively our data suggest that global DNA methylation remains rather stable in irradiated normal body cells in the early phase of DNA damage response.}, language = {en} } @article{FlorenMupepeleMuelleretal.2014, author = {Floren, Andreas and Mupepele, Anne-Christine and M{\"u}ller, Tobias and Dittrich, Marcus}, title = {Are Temperate Canopy Spiders Tree-Species Specific?}, doi = {10.1371/journal.pone.0086571}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111413}, year = {2014}, abstract = {Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood.}, language = {en} } @article{BeyerGothMueller2022, author = {Beyer, Jacob and Goth, Florian and M{\"u}ller, Tobias}, title = {Better integrators for functional renormalization group calculations}, series = {The European Physical Journal B}, volume = {95}, journal = {The European Physical Journal B}, number = {7}, issn = {1434-6028}, doi = {10.1140/epjb/s10051-022-00378-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325131}, year = {2022}, abstract = {We analyze a variety of integration schemes for the momentum space functional renormalization group calculation with the goal of finding an optimized scheme. Using the square lattice t-t' Hubbard model as a testbed we define and benchmark the quality. Most notably we define an error estimate of the solution for the ordinary differential equation circumventing the issues introduced by the divergences at the end of the FRG flow. Using this measure to control for accuracy we find a threefold reduction in number of required integration steps achievable by choice of integrator. We herewith publish a set of recommended choices for the functional renormalization group, shown to decrease the computational cost for FRG calculations and representing a valuable basis for further investigations.}, language = {en} } @article{FerberGerhardsSaueretal.2020, author = {Ferber, Elena and Gerhards, Julian and Sauer, Miriam and Krischke, Markus and Dittrich, Marcus T. and M{\"u}ller, Tobias and Berger, Susanne and Fekete, Agnes and Mueller, Martin J.}, title = {Chemical Priming by Isothiocyanates Protects Against Intoxication by Products of the Mustard Oil Bomb}, series = {Frontiers in Plant Science}, volume = {11}, journal = {Frontiers in Plant Science}, issn = {1664-462X}, doi = {10.3389/fpls.2020.00887}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207104}, year = {2020}, abstract = {In Brassicaceae, tissue damage triggers the mustard oil bomb i.e., activates the degradation of glucosinolates by myrosinases leading to a rapid accumulation of isothiocyanates at the site of damage. Isothiocyanates are reactive electrophilic species (RES) known to covalently bind to thiols in proteins and glutathione, a process that is not only toxic to herbivores and microbes but can also cause cell death of healthy plant tissues. Previously, it has been shown that subtoxic isothiocyanate concentrations can induce transcriptional reprogramming in intact plant cells. Glutathione depletion by RES leading to breakdown of the redox potential has been proposed as a central and common RES signal transduction mechanism. Using transcriptome analyses, we show that after exposure of Arabidopsis seedlings (grown in liquid culture) to subtoxic concentrations of sulforaphane hundreds of genes were regulated without depletion of the cellular glutathione pool. Heat shock genes were among the most highly up-regulated genes and this response was found to be dependent on the canonical heat shock factors A1 (HSFA1). HSFA1-deficient plants were more sensitive to isothiocyanates than wild type plants. Moreover, pretreatment of Arabidopsis seedlings with subtoxic concentrations of isothiocyanates increased resistance against exposure to toxic levels of isothiocyanates and, hence, may reduce the autotoxicity of the mustard oil bomb by inducing cell protection mechanisms.}, language = {en} } @article{KlughammerDittrichBlometal.2017, author = {Klughammer, Johanna and Dittrich, Marcus and Blom, Jochen and Mitesser, Vera and Vogel, Ulrich and Frosch, Matthias and Goesmann, Alexander and M{\"u}ller, Tobias and Schoen, Christoph}, title = {Comparative genome sequencing reveals within-host genetic changes in Neisseria meningitidis during invasive disease}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0169892}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159547}, pages = {e0169892}, year = {2017}, abstract = {Some members of the physiological human microbiome occasionally cause life-threatening disease even in immunocompetent individuals. A prime example of such a commensal pathogen is Neisseria meningitidis, which normally resides in the human nasopharynx but is also a leading cause of sepsis and epidemic meningitis. Using N. meningitidis as model organism, we tested the hypothesis that virulence of commensal pathogens is a consequence of within host evolution and selection of invasive variants due to mutations at contingency genes, a mechanism called phase variation. In line with the hypothesis that phase variation evolved as an adaptation to colonize diverse hosts, computational comparisons of all 27 to date completely sequenced and annotated meningococcal genomes retrieved from public databases showed that contingency genes are indeed enriched for genes involved in host interactions. To assess within-host genetic changes in meningococci, we further used ultra-deep whole-genome sequencing of throat-blood strain pairs isolated from four patients suffering from invasive meningococcal disease. We detected up to three mutations per strain pair, affecting predominantly contingency genes involved in type IV pilus biogenesis. However, there was not a single (set) of mutation(s) that could invariably be found in all four pairs of strains. Phenotypic assays further showed that these genetic changes were generally not associated with increased serum resistance, higher fitness in human blood ex vivo or differences in the interaction with human epithelial and endothelial cells in vitro. In conclusion, we hypothesize that virulence of meningococci results from accidental emergence of invasive variants during carriage and without within host evolution of invasive phenotypes during disease progression in vivo.}, language = {en} } @article{WolfChenSongetal.2013, author = {Wolf, Matthias and Chen, Shilin and Song, Jingyuan and Ankenbrand, Markus and M{\"u}ller, Tobias}, title = {Compensatory Base Changes in ITS2 Secondary Structures Correlate with the Biological Species Concept Despite Intragenomic Variability in ITS2 Sequences - A Proof of Concept}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0066726}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96450}, year = {2013}, abstract = {Compensatory base changes (CBCs) in internal transcribed spacer 2 (ITS2) rDNA secondary structures correlate with Ernst Mayr's biological species concept. This hypothesis also referred to as the CBC species concept recently was subjected to large-scale testing, indicating two distinct probabilities. (1) If there is a CBC then there are two different species with a probability of ~0.93. (2) If there is no CBC then there is the same species with a probability of ~0.76. In ITS2 research, however, the main problem is the multicopy nature of ITS2 sequences. Most recently, 454 pyrosequencing data have been used to characterize more than 5000 intragenomic variations of ITS2 regions from 178 plant species, demonstrating that mutation of ITS2 is frequent, with a mean of 35 variants per species, respectively per individual organism. In this study, using those 454 data, the CBC criterion is reconsidered in the light of intragenomic variability, a proof of concept, a necessary criterion, expecting no intragenomic CBCs in variant ITS2 copies. In accordance with the CBC species concept, we could demonstrate that the probability that there is no intragenomic CBC is ~0.99.}, language = {en} } @article{UrbanRemmeleDittrichetal.2020, author = {Urban, Lara and Remmele, Christian W. and Dittrich, Marcus and Schwarz, Roland F. and M{\"u}ller, Tobias}, title = {covRNA: discovering covariate associations in large-scale gene expression data}, series = {BMC Reserach Notes}, volume = {13}, journal = {BMC Reserach Notes}, doi = {10.1186/s13104-020-04946-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229258}, year = {2020}, abstract = {Objective The biological interpretation of gene expression measurements is a challenging task. While ordination methods are routinely used to identify clusters of samples or co-expressed genes, these methods do not take sample or gene annotations into account. We aim to provide a tool that allows users of all backgrounds to assess and visualize the intrinsic correlation structure of complex annotated gene expression data and discover the covariates that jointly affect expression patterns. Results The Bioconductor package covRNA provides a convenient and fast interface for testing and visualizing complex relationships between sample and gene covariates mediated by gene expression data in an entirely unsupervised setting. The relationships between sample and gene covariates are tested by statistical permutation tests and visualized by ordination. The methods are inspired by the fourthcorner and RLQ analyses used in ecological research for the analysis of species abundance data, that we modified to make them suitable for the distributional characteristics of both, RNA-Seq read counts and microarray intensities, and to provide a high-performance parallelized implementation for the analysis of large-scale gene expression data on multi-core computational systems. CovRNA provides additional modules for unsupervised gene filtering and plotting functions to ensure a smooth and coherent analysis workflow.}, language = {en} } @article{SchneiderDittrichBoecketal.2016, author = {Schneider, Eberhard and Dittrich, Marcus and B{\"o}ck, Julia and Nanda, Indrajit and M{\"u}ller, Tobias and Seidmann, Larissa and Tralau, Tim and Galetzka, Danuta and El Hajj, Nady and Haaf, Thomas}, title = {CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development}, series = {Gene}, volume = {592}, journal = {Gene}, number = {1}, doi = {10.1016/j.gene.2016.07.058}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186936}, pages = {110-118}, year = {2016}, abstract = {Normal human brain development is dependent on highly dynamic epigenetic processes for spatial and temporal gene regulation. Recent work identified wide-spread changes in DNA methylation during fetal brain development. We profiled CpG methylation in frontal cortex of 27 fetuses from gestational weeks 12-42, using Illumina 450K methylation arrays. Sites showing genome-wide significant correlation with gestational age were compared to a publicly available data set from gestational weeks 3-26. Altogether, we identified 2016 matching developmentally regulated differentially methylated positions (m-dDMPs): 1767 m-dDMPs were hypermethylated and 1149 hypomethylated during fetal development. M-dDMPs are underrepresented in CpG islands and gene promoters, and enriched in gene bodies. They appear to cluster in certain chromosome regions. M-dDMPs are significantly enriched in autism-associated genes and CpGs. Our results promote the idea that reduced methylation dynamics during fetal brain development may predispose to autism. In addition, m-dDMPs are enriched in genes with human-specific brain expression patterns and/or histone modifications. Collectively, we defined a subset of dDMPs exhibiting constant methylation changes from early to late pregnancy. The same epigenetic mechanisms involving methylation changes in cis-regulatory regions may have been adopted for human brain evolution and ontogeny.}, language = {en} } @article{GrassingerFlorenMuelleretal.2021, author = {Grassinger, Julia Maria and Floren, Andreas and M{\"u}ller, Tobias and Cerezo-Echevarria, Argi{\~n}e and Beitzinger, Christoph and Conrad, David and T{\"o}rner, Katrin and Staudacher, Marlies and Aupperle-Lellbach, Heike}, title = {Digital lesions in dogs: a statistical breed analysis of 2912 cases}, series = {Veterinary Sciences}, volume = {8}, journal = {Veterinary Sciences}, number = {7}, issn = {2306-7381}, doi = {10.3390/vetsci8070136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242690}, year = {2021}, abstract = {Breed predispositions to canine digital neoplasms are well known. However, there is currently no statistical analysis identifying the least affected breeds. To this end, 2912 canine amputated digits submitted from 2014-2019 to the Laboklin GmbH \& Co. KG for routine diagnostics were statistically analyzed. The study population consisted of 155 different breeds (most common: 634 Mongrels, 411 Schnauzers, 197 Labrador Retrievers, 93 Golden Retrievers). Non-neoplastic processes were present in 1246 (43\%), tumor-like lesions in 138 (5\%), and neoplasms in 1528 cases (52\%). Benign tumors (n = 335) were characterized by 217 subungual keratoacanthomas, 36 histiocytomas, 35 plasmacytomas, 16 papillomas, 12 melanocytomas, 9 sebaceous gland tumors, 6 lipomas, and 4 bone tumors. Malignant neoplasms (n = 1193) included 758 squamous cell carcinomas (SCC), 196 malignant melanomas (MM), 76 soft tissue sarcomas, 52 mast cell tumors, 37 non-specified sarcomas, 29 anaplastic neoplasms, 24 carcinomas, 20 bone tumors, and 1 histiocytic sarcoma. Predisposed breeds for SCC included the Schnauzer (log OR = 2.61), Briard (log OR = 1.78), Rottweiler (log OR = 1.54), Poodle (log OR = 1.40), and Dachshund (log OR = 1.30). Jack Russell Terriers (log OR = -2.95) were significantly less affected by SCC than Mongrels. Acral MM were significantly more frequent in Rottweilers (log OR = 1.88) and Labrador Retrievers (log OR = 1.09). In contrast, Dachshunds (log OR = -2.17), Jack Russell Terriers (log OR = -1.88), and Rhodesian Ridgebacks (log OR = -1.88) were rarely affected. This contrasted with the well-known predisposition of Dachshunds and Rhodesian Ridgebacks to oral and cutaneous melanocytic neoplasms. Further studies are needed to explain the underlying reasons for breed predisposition or "resistance" to the development of specific acral tumors and/or other sites.}, language = {en} }