@article{HochleitnerJuengstBrownetal.2015, author = {Hochleitner, Gernot and J{\"u}ngst, Tomasz and Brown, Toby D and Hahn, Kathrin and Moseke, Claus and Jakob, Franz and Dalton, Paul D and Groll, J{\"u}rgen}, title = {Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing}, series = {Biofabrication}, volume = {7}, journal = {Biofabrication}, number = {3}, doi = {10.1088/1758-5090/7/3/035002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254053}, year = {2015}, abstract = {The aim of this study was to explore the lower resolution limits of an electrohydrodynamic process combined with direct writing technology of polymer melts. Termed melt electrospinning writing, filaments are deposited layer-by-layer to produce discrete three-dimensional scaffolds for in vitro research. Through optimization of the parameters (flow rate, spinneret diameter, voltage, collector distance) for poly-ϵ-caprolactone, we could direct-write coherent scaffolds with ultrafine filaments, the smallest being 817 ± 165 nm. These low diameter filaments were deposited to form box-structures with a periodicity of 100.6 ± 5.1 μm and a height of 80 μm (50 stacked filaments; 100 overlap at intersections). We also observed oriented crystalline regions within such ultrafine filaments after annealing at 55 °C. The scaffolds were printed upon NCO-sP(EO-stat-PO)-coated glass slide surfaces and withstood frequent liquid exchanges with negligible scaffold detachment for at least 10 days in vitro.}, language = {en} } @article{McCollGrollJungstetal.2018, author = {McColl, Erin and Groll, J{\"u}rgen and Jungst, Tomasz and Dalton, Paul D.}, title = {Design and fabrication of melt electrowritten tubes using intuitive software}, series = {Materials and Design}, volume = {155}, journal = {Materials and Design}, doi = {10.1016/j.matdes.2018.05.036}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223891}, pages = {46-58}, year = {2018}, abstract = {This study approaches the accurate continuous direct-writing onto a cylindrical collector from a mathematical perspective, taking into account the winding angle, cylinder diameter and length required for the final 3D printed tube. Using an additive manufacturing process termed melt electrowriting (MEW), porous tubes intended for tissue engineering applications are fabricated from medical-grade poly(ε-caprolactone) (PCL), validating the mathematically-derived method. For the fabricated tubes in this study, the pore size, winding angle and printed length can all be planned in advance and manufactured as designed. The physical dimensions of the tubes matched theoretical predictions and mechanical testing performed demonstrated that variations in the tubular morphology have a direct impact on their strength. MEWTubes, the web-based application developed and described here, is a particularly useful tool for planning the complex continuous direct writing path required for MEW onto a rotating, cylindrical build surface.}, language = {en} }