@article{AbdelmohsenChengViegelmannetal.2014, author = {Abdelmohsen, Usama Ramadan and Cheng, Cheng and Viegelmann, Christina and Zhang, Tong and Grkovic, Tanja and Ahmed, Safwat and Quinn, Ronald J. and Hentschel, Ute and Edrada-Ebel, RuAngelie}, title = {Dereplication Strategies for Targeted Isolation of New Antitrypanosomal Actinosporins A and B from a Marine Sponge Associated-Actinokineospora sp EG49}, series = {Marine Drugs}, volume = {12}, journal = {Marine Drugs}, number = {3}, issn = {1660-3397}, doi = {10.3390/md12031220}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119876}, pages = {1220-44}, year = {2014}, abstract = {High resolution Fourier transform mass spectrometry (HRFTMS) and nuclear magnetic resonance (NMR) spectroscopy were employed as complementary metabolomic tools to dereplicate the chemical profile of the new and antitrypanosomally active sponge-associated bacterium Actinokineospora sp. EG49 extract. Principal Component (PCA), hierarchical clustering (HCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) were used to evaluate the HRFTMS and NMR data of crude extracts from four different fermentation approaches. Statistical analysis identified the best culture one-strain-many-compounds (OSMAC) condition and extraction procedure, which was used for the isolation of novel bioactive metabolites. As a result, two new O-glycosylated angucyclines, named actinosporins A (1) and B (2), were isolated from the broth culture of Actinokineospora sp. strain EG49, which was cultivated from the Red Sea sponge Spheciospongia vagabunda. The structures of actinosporins A and B were determined by 1D- and 2D-NMR techniques, as well as high resolution tandem mass spectrometry. Testing for antiparasitic properties showed that actinosporin A exhibited activity against Trypanosoma brucei brucei with an IC₅₀ value of 15 µM; however no activity was detected against Leishmania major and Plasmodium falciparum, therefore suggesting its selectivity against the parasite Trypanosoma brucei brucei; the causative agent of sleeping sickness.}, language = {en} } @article{MacintyreZhangViegelmannetal.2014, author = {Macintyre, Lynsey and Zhang, Tong and Viegelmann, Christina and Martinez, Ignacio Juarez and Cheng, Cheng and Dowdells, Catherine and Abdelmohsen, Usama Ramadan and Gernert, Christine and Hentschel, Ute and Edrada-Ebel, RuAngelie}, title = {Metabolomic Tools for Secondary Metabolite Discovery from Marine Microbial Symbionts}, series = {Marine Drugs}, volume = {12}, journal = {Marine Drugs}, number = {6}, issn = {1660-3397}, doi = {10.3390/md12063416}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116097}, pages = {3416-3448}, year = {2014}, abstract = {Marine invertebrate-associated symbiotic bacteria produce a plethora of novel secondary metabolites which may be structurally unique with interesting pharmacological properties. Selection of strains usually relies on literature searching, genetic screening and bioactivity results, often without considering the chemical novelty and abundance of secondary metabolites being produced by the microorganism until the time-consuming bioassay-guided isolation stages. To fast track the selection process, metabolomic tools were used to aid strain selection by investigating differences in the chemical profiles of 77 bacterial extracts isolated from cold water marine invertebrates from Orkney, Scotland using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Following mass spectrometric analysis and dereplication using an Excel macro developed in-house, principal component analysis (PCA) was employed to differentiate the bacterial strains based on their chemical profiles. NMR H-1 and correlation spectroscopy (COSY) were also employed to obtain a chemical fingerprint of each bacterial strain and to confirm the presence of functional groups and spin systems. These results were then combined with taxonomic identification and bioassay screening data to identify three bacterial strains, namely Bacillus sp. 4117, Rhodococcus sp. ZS402 and Vibrio splendidus strain LGP32, to prioritize for scale-up based on their chemically interesting secondary metabolomes, established through dereplication and interesting bioactivities, determined from bioassay screening.}, language = {en} }