@article{MarcusVogelSchubertetal.2013, author = {Marcus, U. and Vogel, U. and Schubert, A. and Claus, H. and Baetzing-Feigenbaum, J. and Hellenbrand, W. and Wichmann, O.}, title = {A cluster of invasive meningococcal disease in young men who have sex with men in Berlin, October 2012 to May 2013}, series = {Eurosurveillance}, volume = {18}, journal = {Eurosurveillance}, number = {28}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131711}, pages = {6-8}, year = {2013}, abstract = {No abstract available.}, language = {en} } @article{SassVanAckerFoerstneretal.2015, author = {Sass, Andrea M. and Van Acker, Heleen and F{\"o}rstner, Konrad U. and Van Nieuwerburgh, Filip and Deforce, Dieter and Vogel, J{\"o}rg and Coenye, Tom}, title = {Genome-wide transcription start site profiling in biofilm-grown Burkholderia cenocepacia J2315}, series = {BMC Genomics}, volume = {16}, journal = {BMC Genomics}, number = {775}, doi = {10.1186/s12864-015-1993-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139748}, year = {2015}, abstract = {Background: Burkholderia cenocepacia is a soil-dwelling Gram-negative Betaproteobacterium with an important role as opportunistic pathogen in humans. Infections with B. cenocepacia are very difficult to treat due to their high intrinsic resistance to most antibiotics. Biofilm formation further adds to their antibiotic resistance. B. cenocepacia harbours a large, multi-replicon genome with a high GC-content, the reference genome of strain J2315 includes 7374 annotated genes. This study aims to annotate transcription start sites and identify novel transcripts on a whole genome scale. Methods: RNA extracted from B. cenocepacia J2315 biofilms was analysed by differential RNA-sequencing and the resulting dataset compared to data derived from conventional, global RNA-sequencing. Transcription start sites were annotated and further analysed according to their position relative to annotated genes. Results: Four thousand ten transcription start sites were mapped over the whole B. cenocepacia genome and the primary transcription start site of 2089 genes expressed in B. cenocepacia biofilms were defined. For 64 genes a start codon alternative to the annotated one was proposed. Substantial antisense transcription for 105 genes and two novel protein coding sequences were identified. The distribution of internal transcription start sites can be used to identify genomic islands in B. cenocepacia. A potassium pump strongly induced only under biofilm conditions was found and 15 non-coding small RNAs highly expressed in biofilms were discovered. Conclusions: Mapping transcription start sites across the B. cenocepacia genome added relevant information to the J2315 annotation. Genes and novel regulatory RNAs putatively involved in B. cenocepacia biofilm formation were identified. These findings will help in understanding regulation of B. cenocepacia biofilm formation.}, language = {en} } @article{EliasHeuschmannSchmittetal.2013, author = {Elias, Johannes and Heuschmann, Peter U. and Schmitt, Corinna and Eckhardt, Frithjof and Boehm, Hartmut and Maier, Sebastian and Kolb-M{\"a}urer, Annette and Riedmiller, Hubertus and M{\"u}llges, Wolfgang and Weisser, Christoph and Wunder, Christian and Frosch, Matthias and Vogel, Ulrich}, title = {Prevalence dependent calibration of a predictive model for nasal carriage of methicillin-resistant Staphylococcus aureus}, series = {BMC Infectious Diseases}, journal = {BMC Infectious Diseases}, doi = {10.1186/1471-2334-13-111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96091}, year = {2013}, abstract = {Background Published models predicting nasal colonization with Methicillin-resistant Staphylococcus aureus among hospital admissions predominantly focus on separation of carriers from non-carriers and are frequently evaluated using measures of discrimination. In contrast, accurate estimation of carriage probability, which may inform decisions regarding treatment and infection control, is rarely assessed. Furthermore, no published models adjust for MRSA prevalence. Methods Using logistic regression, a scoring system (values from 0 to 200) predicting nasal carriage of MRSA was created using a derivation cohort of 3091 individuals admitted to a European tertiary referral center between July 2007 and March 2008. The expected positive predictive value of a rapid diagnostic test (GeneOhm, Becton \& Dickinson Co.) was modeled using non-linear regression according to score. Models were validated on a second cohort from the same hospital consisting of 2043 patients admitted between August 2008 and January 2012. Our suggested correction score for prevalence was proportional to the log-transformed odds ratio between cohorts. Calibration before and after correction, i.e. accurate classification into arbitrary strata, was assessed with the Hosmer-Lemeshow-Test. Results Treating culture as reference, the rapid diagnostic test had positive predictive values of 64.8\% and 54.0\% in derivation and internal validation corhorts with prevalences of 2.3\% and 1.7\%, respectively. In addition to low prevalence, low positive predictive values were due to high proportion (> 66\%) of mecA-negative Staphylococcus aureus among false positive results. Age, nursing home residence, admission through the medical emergency department, and ICD-10-GM admission diagnoses starting with "A" or "J" were associated with MRSA carriage and were thus included in the scoring system, which showed good calibration in predicting probability of carriage and the rapid diagnostic test's expected positive predictive value. Calibration for both probability of carriage and expected positive predictive value in the internal validation cohort was improved by applying the correction score. Conclusions Given a set of patient parameters, the presented models accurately predict a) probability of nasal carriage of MRSA and b) a rapid diagnostic test's expected positive predictive value. While the former can inform decisions regarding empiric antibiotic treatment and infection control, the latter can influence choice of screening method.}, language = {en} } @article{YuVogelFoerstner2018, author = {Yu, Sung-Huan and Vogel, J{\"o}rg and F{\"o}rstner, Konrad U.}, title = {ANNOgesic: a Swiss army knife for the RNA-seq based annotation of bacterial/archaeal genomes}, series = {GigaScience}, volume = {7}, journal = {GigaScience}, doi = {10.1093/gigascience/giy096}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178942}, year = {2018}, abstract = {To understand the gene regulation of an organism of interest, a comprehensive genome annotation is essential. While some features, such as coding sequences, can be computationally predicted with high accuracy based purely on the genomic sequence, others, such as promoter elements or noncoding RNAs, are harder to detect. RNA sequencing (RNA-seq) has proven to be an efficient method to identify these genomic features and to improve genome annotations. However, processing and integrating RNA-seq data in order to generate high-resolution annotations is challenging, time consuming, and requires numerous steps. We have constructed a powerful and modular tool called ANNOgesic that provides the required analyses and simplifies RNA-seq-based bacterial and archaeal genome annotation. It can integrate data from conventional RNA-seq and differential RNA-seq and predicts and annotates numerous features, including small noncoding RNAs, with high precision. The software is available under an open source license (ISCL) at https://pypi.org/project/ANNOgesic/.}, language = {en} } @article{WestermannVenturiniSellinetal.2019, author = {Westermann, Alexander J. and Venturini, Elisa and Sellin, Mikael E. and F{\"o}rstner, Konrad U. and Hardt, Wolf-Dietrich and Vogel, J{\"o}rg}, title = {The major RNA-binding protein ProQ impacts virulence gene expression in Salmonella enterica serovar Typhimurium}, series = {mBio}, volume = {10}, journal = {mBio}, number = {1}, doi = {10.1128/mBio.02504-18}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177722}, pages = {e02504-18}, year = {2019}, abstract = {FinO domain proteins such as ProQ of the model pathogen Salmonella enterica have emerged as a new class of major RNA-binding proteins in bacteria. ProQ has been shown to target hundreds of transcripts, including mRNAs from many virulence regions, but its role, if any, in bacterial pathogenesis has not been studied. Here, using a Dual RNA-seq approach to profile ProQ-dependent gene expression changes as Salmonella infects human cells, we reveal dysregulation of bacterial motility, chemotaxis, and virulence genes which is accompanied by altered MAPK (mitogen-activated protein kinase) signaling in the host. Comparison with the other major RNA chaperone in Salmonella, Hfq, reinforces the notion that these two global RNA-binding proteins work in parallel to ensure full virulence. Of newly discovered infection-associated ProQ-bound small noncoding RNAs (sRNAs), we show that the 3′UTR-derived sRNA STnc540 is capable of repressing an infection-induced magnesium transporter mRNA in a ProQ-dependent manner. Together, this comprehensive study uncovers the relevance of ProQ for Salmonella pathogenesis and highlights the importance of RNA-binding proteins in regulating bacterial virulence programs. IMPORTANCE The protein ProQ has recently been discovered as the centerpiece of a previously overlooked "third domain" of small RNA-mediated control of gene expression in bacteria. As in vitro work continues to reveal molecular mechanisms, it is also important to understand how ProQ affects the life cycle of bacterial pathogens as these pathogens infect eukaryotic cells. Here, we have determined how ProQ shapes Salmonella virulence and how the activities of this RNA-binding protein compare with those of Hfq, another central protein in RNA-based gene regulation in this and other bacteria. To this end, we apply global transcriptomics of pathogen and host cells during infection. In doing so, we reveal ProQ-dependent transcript changes in key virulence and host immune pathways. Moreover, we differentiate the roles of ProQ from those of Hfq during infection, for both coding and noncoding transcripts, and provide an important resource for those interested in ProQ-dependent small RNAs in enteric bacteria.}, language = {en} } @article{SharanFoerstnerEulalioetal.2017, author = {Sharan, Malvika and F{\"o}rstner, Konrad U. and Eulalio, Ana and Vogel, J{\"o}rg}, title = {APRICOT: an integrated computational pipeline for the sequence-based identification and characterization of RNA-binding proteins}, series = {Nucleic Acids Research}, volume = {45}, journal = {Nucleic Acids Research}, number = {11}, doi = {10.1093/nar/gkx137}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157963}, pages = {e96}, year = {2017}, abstract = {RNA-binding proteins (RBPs) have been established as core components of several post-transcriptional gene regulation mechanisms. Experimental techniques such as cross-linking and co-immunoprecipitation have enabled the identification of RBPs, RNA-binding domains (RBDs) and their regulatory roles in the eukaryotic species such as human and yeast in large-scale. In contrast, our knowledge of the number and potential diversity of RBPs in bacteria is poorer due to the technical challenges associated with the existing global screening approaches. We introduce APRICOT, a computational pipeline for the sequence-based identification and characterization of proteins using RBDs known from experimental studies. The pipeline identifies functional motifs in protein sequences using position-specific scoring matrices and Hidden Markov Models of the functional domains and statistically scores them based on a series of sequence-based features. Subsequently, APRICOT identifies putative RBPs and characterizes them by several biological properties. Here we demonstrate the application and adaptability of the pipeline on large-scale protein sets, including the bacterial proteome of Escherichia coli. APRICOT showed better performance on various datasets compared to other existing tools for the sequence-based prediction of RBPs by achieving an average sensitivity and specificity of 0.90 and 0.91 respectively. The command-line tool and its documentation are available at https://pypi.python.org/pypi/bio-apricot.}, language = {en} } @article{FlemmingHankirErnestusetal.2020, author = {Flemming, S. and Hankir, M. and Ernestus, R.-I. and Seyfried, F. and Germer, C.-T. and Meybohm, P. and Wurmb, T. and Vogel, U. and Wiegering, A.}, title = {Surgery in times of COVID-19 — recommendations for hospital and patient management}, series = {Langenbeck's Archives of Surgery}, volume = {405}, journal = {Langenbeck's Archives of Surgery}, issn = {1435-2443}, doi = {10.1007/s00423-020-01888-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231766}, pages = {359-364}, year = {2020}, abstract = {Background The novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), has escalated rapidly to a global pandemic stretching healthcare systems worldwide to their limits. Surgeonshave had to immediately react to this unprecedented clinical challenge by systematically repurposing surgical wards. Purpose To provide a detailed set of guidelines developed in a surgical ward at University Hospital Wuerzburg to safelyaccommodate the exponentially rising cases of SARS-CoV-2 infected patients without compromising the care of emergencysurgery and oncological patients or jeopardizing the well-being of hospital staff. Conclusions The dynamic prioritization of SARS-CoV-2 infected and surgical patient groups is key to preserving life whilemaintaining high surgical standards. Strictly segregating patient groups in emergency rooms, non-intensive care wards andoperating areas prevents viral spread while adequately training and carefully selecting hospital staff allow them to confidentlyand successfully undertake their respective clinical duties.}, language = {en} }