@article{LiuBudimanTianetal.2020, author = {Liu, Zhiqiang and Budiman, Yudha P. and Tian, Ya-Ming and Friedrich, Alexandra and Huang, Mingming and Westcott, Stephen A. and Radius, Udo and Marder, Todd B.}, title = {Copper-Catalyzed Oxidative Cross-Coupling of Electron-Deficient Polyfluorophenylboronate Esters with Terminal Alkynes}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {71}, doi = {10.1002/chem.202002888}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224362}, pages = {17267 -- 17274}, year = {2020}, abstract = {We report herein a mild procedure for the copper-catalyzed oxidative cross-coupling of electron-deficient polyfluorophenylboronate esters with terminal alkynes. This method displays good functional group tolerance and broad substrate scope, generating cross-coupled alkynyl(fluoro)arene products in moderate to excellent yields. Thus, it represents a simple alternative to the conventional Sonogashira reaction.}, language = {en} } @article{BudimanWestcottRadiusetal.2021, author = {Budiman, Yudha P. and Westcott, Stephen A. and Radius, Udo and Marder, Todd B.}, title = {Fluorinated Aryl Boronates as Building Blocks in Organic Synthesis}, series = {Advanced Synthesis \& Catalysis}, volume = {363}, journal = {Advanced Synthesis \& Catalysis}, number = {9}, doi = {10.1002/adsc.202001291}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225908}, pages = {2224 -- 2255}, year = {2021}, abstract = {Organoboron compounds are well known building blocks for many organic reactions. However, under basic conditions, polyfluorinated aryl boronic acid derivatives suffer from instability issues that are accelerated in compounds containing an ortho-fluorine group, which result in the formation of the corresponding protodeboronation products. Therefore, a considerable amount of research has focused on novel methodologies to synthesize these valuable compounds while avoiding the protodeboronation issue. This review summarizes the latest developments in the synthesis of fluorinated aryl boronic acid derivatives and their applications in cross-coupling reactions and other transformations. image}, language = {en} } @article{LorkowskiKrahfussKubickietal.2019, author = {Lorkowski, Jan and Krahfuss, Mirjam and Kubicki, Maciej and Radius, Udo and Pietraszuk, Cezary}, title = {Intramolecular ring expansion reaction (RER) and intermolecular coordination of in situ generated Cyclic (Amino)(Aryl)Carbenes (cAArCs)}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {48}, doi = {10.1002/chem.201902630}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204847}, pages = {11365-11374}, year = {2019}, abstract = {Cyclic (amino)(aryl)carbenes (cAArCs) based on the isoindoline core were successfully generated in situ by α-elimination of 3-alkoxyisoindolines at high temperatures or by deprotonation of isoindol-2-ium chlorides with sodium or copper(I) acetates at low temperatures. 3-Alkoxy-isoindolines 2 a ,b-OR (R=Me, Et, i Pr) have been prepared in high yields by the addition of a solution of 2-aryl-1,1-diphenylisoindol-2-ium triflate (1 a ,b-OTf ; a : aryl=Dipp=2,6-diisopropylphenyl; b : Mesityl-, Mes=2,4,6-trimethylphenyl) to the corresponding alcohol (ROH) with NEt3 at room temperature. Furthermore, the reaction of 2 a ,b-OMe in diethyl ether with a tenfold excess of hydrochloric acid led to the isolation of the isoindol-2-ium chlorides 1 a ,b-Cl in high yields. The thermally generated cAArC reacts with sulfur to form the thioamide 3 a . Without any additional trapping reagent, in situ generation of 1,1-diphenylisoidolin-3-ylidenes does not lead to the isolation of these compounds, but to the reaction products of the insertion of the carbene carbon atom into an ortho C-H bond of a phenyl substituent, followed by ring-expansion reaction; namely, anthracene derivatives 9-N(H)aryl-10-Ph-C14H8 4 a ,b (a : Dipp; b : Mes). These compounds are conveniently synthesized by deprotonation of the isoindol-2-ium chlorides with sodium acetate in high yields. Deprotonation of 1 a-Cl with copper(I) acetate at low temperatures afforded a mixture of 4 a and the corresponding cAArC copper(I) chloride 5 a , and allowed the isolation and structural characterization of the first example of a cAArC copper complex of general formula [(cAArC)CuCl].}, language = {en} } @article{LorkowskiKrahfussKubickietal.2019, author = {Lorkowski, Jan and Krahfuß, Mirjam and Kubicki, Maciej and Radius, Udo and Pietraszuk, Cezary}, title = {Intramolecular Ring-Expansion Reaction (RER) and Intermolecular Coordination of In Situ Generated Cyclic (Amino)(aryl)carbenes (cAArCs)}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {48}, doi = {10.1002/chem.201902630}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212496}, pages = {11365 -- 11374}, year = {2019}, abstract = {Cyclic (amino)(aryl)carbenes (cAArCs) based on the isoindoline core were successfully generated in situ by α-elimination of 3-alkoxyisoindolines at high temperatures or by deprotonation of isoindol-2-ium chlorides with sodium or copper(I) acetates at low temperatures. 3-Alkoxy-isoindolines 2 a,b-OR (R=Me, Et, iPr) have been prepared in high yields by the addition of a solution of 2-aryl-1,1-diphenylisoindol-2-ium triflate (1 a,b-OTf; a: aryl=Dipp=2,6-diisopropylphenyl; b: Mesityl-, Mes=2,4,6-trimethylphenyl) to the corresponding alcohol (ROH) with NEt3 at room temperature. Furthermore, the reaction of 2 a,b-OMe in diethyl ether with a tenfold excess of hydrochloric acid led to the isolation of the isoindol-2-ium chlorides 1 a,b-Cl in high yields. The thermally generated cAArC reacts with sulfur to form the thioamide 3 a. Without any additional trapping reagent, in situ generation of 1,1-diphenylisoidolin-3-ylidenes does not lead to the isolation of these compounds, but to the reaction products of the insertion of the carbene carbon atom into an ortho C-H bond of a phenyl substituent, followed by ring-expansion reaction; namely, anthracene derivatives 9-N(H)aryl-10-Ph-C14H8 4 a,b (a: Dipp; b: Mes). These compounds are conveniently synthesized by deprotonation of the isoindol-2-ium chlorides with sodium acetate in high yields. Deprotonation of 1 a-Cl with copper(I) acetate at low temperatures afforded a mixture of 4 a and the corresponding cAArC copper(I) chloride 5 a, and allowed the isolation and structural characterization of the first example of a cAArC copper complex of general formula [(cAArC)CuCl].}, language = {en} } @article{TenderaSchaubKrahfussetal.2020, author = {Tendera, Lukas and Schaub, Thomas and Krahfuss, Mirjam J. and Kuntze-Fechner, Maximilian W. and Radius, Udo}, title = {Large vs. Small NHC Ligands in Nickel(0) Complexes: The Coordination of Olefins, Ketones and Aldehydes at [Ni(NHC)\(_{2}\)]}, series = {European Journal of Inorganic Chemistry}, volume = {2020}, journal = {European Journal of Inorganic Chemistry}, number = {33}, doi = {10.1002/ejic.202000493}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216058}, pages = {3194 -- 3207}, year = {2020}, abstract = {Investigations concerning the reactivity of Ni(0) complexes [Ni(NHC)\(_{2}\)] of NHCs (N-heterocyclic carbene) of different steric demand, Mes\(_{2}\)Im (= 1,3-dimesitylimidazoline-2-ylidene) and iPr\(_{2}\)Im (= 1,3-diisopropyl-imidazoline-2-ylidene), with olefins, ketones and aldehydes are reported. The reaction of [Ni(Mes\(_{2}\)Im)\(_{2}\)] 1 with ethylene or methyl acrylate afforded the complexes [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-C\(_{2}\)H\(_{4}\))] 3 and [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-(C,C)-H\(_{2}\)C=CHCOOMe)] 4, as it was previously reported for [Ni\(_{2}\)(iPr\(_{2}\)Im)\(_{4}\)(µ-(η\(^{2}\):η\(^{2}\))-COD)] 2 as a source for [Ni(iPr\(_{2}\)Im)\(_{2}\)]. In contrast to 2, complex 1 does not react with sterically more demanding olefins such as tetramethylethylene, 1,1-diphenylethylene and cyclohexene. The reaction of [Ni(NHC)\(_{2}\)] with more π-acidic ketones or aldehydes led to formation of complexes with side-on η\(^{2}\)-(C,O)-coordinating ligands: [Ni(iPr\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=CH\(^{t}\)Bu)] 5, [Ni(iPr\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=CHPh)] 6, [Ni(iPr\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=CMePh)] 7, [Ni(iPr\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=CPh\(_{2}\))] 8, [Ni(iPr\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=C(4-F-C\(_{6}\)H\(_{4}\))\(_{2}\))] 9, [Ni(iPr\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=C(OMe)(CF\(_{3}\)))] 10 and [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=CHPh)] 11, [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=CH(CH(CH\(_{3}\))\(_{2}\)))] 12, [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=CH(4-NMe\(_{2}\)-C\(_{6}\)H\(_{4}\)))] 13, [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=CH(4-OMe-C\(_{6}\)H\(_{4}\)))] 14, [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=CPh\(_{2}\))] 15 and [Ni(Mes\(_{2}\)Im)\(_{2}\)(η\(^{2}\)-O=C(4-F-C\(_{6}\)H\(_{4}\))\(_{2}\))] 16. The reaction of 1 and 2 with these simple aldehydes and ketones does not lead to a significantly different outcome, but NHC ligand rotation is hindered for the Mes\(_{2}\)Im complexes 3, 4 and 11-16 according to NMR spectroscopy. The solid-state structures of 3, 4, 11 and 12 reveal significantly larger C\(_{NHC}\)-Ni-C\(_{NHC}\) angles in the Mes\(_{2}\)Im complexes compared to the iPr\(_{2}\)Im complexes. As electron transfer in d\(^{8}\)- (or d\(^{10}\)-) ML\(_{2}\) complexes to π-acidic ligands depends on the L-M-L bite angle, the different NHCs lead thus to a different degree of electron transfer and activation of the olefin, aldehyde or ketone ligand, i.e., [Ni(iPr\(_{2}\)Im)\(_{2}\)] is the better donor to these π-acidic ligands. Furthermore, we identified two different side products from the reaction of 1 with benzaldehyde, trans-[Ni(Mes\(_{2}\)Im)\(_{2}\)H(OOCPh)] 17 and [Ni\(_{2}\)(Mes\(_{2}\)Im)\(_{2}\)(µ\(_{2}\)-CO)(µ\(_{2}\)-η\(^{2}\)-C,O-PhCOCOPh)] 18, which indicate that radical intermediates and electron transfer processes might be of importance in the reaction of 1 with aldehydes and ketones.}, language = {en} } @article{HorrerKrahfussLubitzetal.2020, author = {Horrer, G{\"u}nther and Krahfuß, Mirjam J. and Lubitz, Katharina and Krummenacher, Ivo and Braunschweig, Holger and Radius, Udo}, title = {N-Heterocyclic Carbene and Cyclic (Alkyl)(amino)carbene Complexes of Titanium(IV) and Titanium(III)}, series = {European Journal of Inorganic Chemistry}, volume = {2020}, journal = {European Journal of Inorganic Chemistry}, number = {3}, doi = {10.1002/ejic.201901207}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208725}, pages = {281-291}, year = {2020}, abstract = {The reaction of one and two equivalents of the N -heterocyclic carbene IMes [IMes = 1,3-bis(2,4,6-trimethyl-phenyl)imidazolin-2-ylidene] or the cyclic (alkyl)(amino)carbene cAAC\(^{Me}\) [cAAC\(^{Me}\) = 1-(2,6-diisopropyl-phenyl)-3,3,5,5-tetra-methylpyrrolidin-2-ylidene] with [TiCl\(_{4}\)] in n -hexane results in the formation of mono- and bis-carbene complexes [TiCl\(_{4}\)(IMes)] 1 , [TiCl\(_{4}\)(IMes)2] 2 , [TiCl\(_{4}\)(cAAC\(^{Me}\))] 3 , and [TiCl\(_{4}\)(cAAC\(^{Me}\))\(_{2}\)] 4 , respectively. For comparison, the titanium(IV) NHC complex [TiCl\(_{4}\)(Ii Pr\(^{Me}\))] 5 (Ii Pr\(^{Me}\) = 1,3-diisopropyl-4,5-dimethyl-imidazolin-2-ylidene) has been synthesized and structurally characterized. The reaction of [TiCl\(_{4}\)(IMes)] 1 with PMe\(_{3}\) affords the mixed substituted complex [TiCl\(_{4}\)(IMes)(PMe\(_{3}\))] 6 . The reactions of [TiCl\(_{3}\)(THF)\(_{3}\)] with two equivalents of the carbenes IMes and cAAC\(^{Me}\) in n -hexane lead to the clean formation of the titanium(III) complexes [TiCl\(_{3}\)(IMes)\(_{2}\)] 7 and [TiCl\(_{3}\)(cAAC\(^{Me}\))\(_{2}\)] 8 . Compounds 1 -8 have been completely characterized by elemental analysis, IR and multinuclear NMR spectroscopy and for 2 -5 , 7 and 8 by X-ray diffraction. Magnetometry in solution, EPR and UV/Vis spectroscopy and DFT calculations performed on 7 and 8 are indicative of a predominantly metal-centered d\(^{1}\)-radical in both cases.}, language = {en} } @article{HuangWuKrebsetal.2021, author = {Huang, Mingming and Wu, Zhu and Krebs, Johannes and Friedrich, Alexandra and Luo, Xiaoling and Westcott, Stephen A. and Radius, Udo and Marder, Todd B.}, title = {Ni-Catalyzed Borylation of Aryl Sulfoxides}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {31}, doi = {10.1002/chem.202100342}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256778}, pages = {8149-8158}, year = {2021}, abstract = {A nickel/N-heterocyclic carbene (NHC) catalytic system has been developed for the borylation of aryl sulfoxides with B\(_{2}\)(neop)\(_{2}\) (neop=neopentyl glycolato). A wide range of aryl sulfoxides with different electronic and steric properties were converted into the corresponding arylboronic esters in good yields. The regioselective borylation of unsymmetric diaryl sulfoxides was also feasible leading to borylation of the sterically less encumbered aryl substituent. Competition experiments demonstrated that an electron-deficient aryl moiety reacts preferentially. The origin of the selectivity in the Ni-catalyzed borylation of electronically biased unsymmetrical diaryl sulfoxide lies in the oxidative addition step of the catalytic cycle, as oxidative addition of methoxyphenyl 4-(trifluoromethyl)phenyl sulfoxide to the Ni(0) complex occurs selectively to give the structurally characterized complex trans-[Ni(ICy)\(_{2}\)(4-CF\(_{3}\)-C\(_{6}\)H\(_{4}\)){(SO)-4-MeO-C\(_{6}\)H\(_{4}\)}] 4. For complex 5, the isomer trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(OSC\(_{6}\)H\(_{5}\))] 5-I was structurally characterized in which the phenyl sulfinyl ligand is bound via the oxygen atom to nickel. In solution, the complex trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(OSC\(_{6}\)H\(_{5}\))] 5-I is in equilibrium with the S-bonded isomer trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(SOC\(_{6}\)H\(_{5}\))] 5, as shown by NMR spectroscopy. DFT calculations reveal that these isomers are separated by a mere 0.3 kJ/mol (M06/def2-TZVP-level of theory) and connected via a transition state trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(η\(^{2}\)-{SO}-C\(_{6}\)H\(_{5}\))], which lies only 10.8 kcal/mol above 5.}, language = {en} } @article{KraemerLuffRadiusetal.2021, author = {Kr{\"a}mer, Felix and Luff, Martin S. and Radius, Udo and Weigend, Florian and Breher, Frank}, title = {NON-Ligated N-Heterocyclic Tetrylenes}, series = {European Journal of Inorganic Chemistry}, volume = {2021}, journal = {European Journal of Inorganic Chemistry}, number = {35}, doi = {10.1002/ejic.202100446}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262586}, pages = {3591 -- 3600}, year = {2021}, abstract = {We report on the synthesis of N-heterocyclic tetrylenes ligated by the NON-donor framework 4,5-bis(2,6-diisopropylphenyl-amino)-2,7-di-tert-butyl-9,9-dimethylxanthene. The molecular structures of the germylene (3), stannylene (4) and plumbylene (5) where determined by X-ray diffraction studies. Furthermore, we present quantum chemical studies on the σ-donor and π-acceptor properties of 3-5. Additionally, we report on the reactivity of the tetrylenes towards the transition metal carbonyls [Rh(CO)\(_{2}\)Cl]\(_{2}\), [W(CO)\(_{6}\)] and [Ni(CO)\(_{4}\)]. The isolated complexes (6 and 7) show the differing reactivity of NHTs compared to NHCs. Instead of just forming the anticipated complex [(NON)Sn-Rh(CO)\(_{2}\)Cl], 4 inserts into the Rh-Cl bond to afford [(NON)Sn(Cl)Rh(CO)(C\(_{6}\)H\(_{6}\))] (6, additional CO/C6H6 exchange) and [(NON)Sn(Cl)Rh\(_{2}\)(CO)\(_{4}\)Cl] (7). By avoiding halogenated transition metal precursors in order to prevent insertion reactions, germylene 3 shows "classical" coordination chemistry towards {Ni(CO)3} forming the complex [(NON)Ge-Ni(CO)\(_{3}\)] (8).}, language = {en} } @article{PhilippKrahfussRadackietal.2021, author = {Philipp, Michael S. M. and Krahfuss, Mirjam J. and Radacki, Krzysztof and Radius, Udo}, title = {N-Heterocyclic Carbene and Cyclic (Alkyl)(amino)carbene Adducts of Antimony(III)}, series = {European Journal of Inorganic Chemistry}, volume = {2021}, journal = {European Journal of Inorganic Chemistry}, number = {38}, doi = {10.1002/ejic.202100632}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257408}, pages = {4007-4019}, year = {2021}, abstract = {A systematic study on Lewis-acid/base adducts of N-heterocyclic carbenes (NHCs) and the cyclic (alkyl)(amino)carbene cAAC\(^{Me}\) (1-(2,6-di-iso-propylphenyl)-3,3,5,5-tetramethyl-pyrrolidin-2-ylidene) with antimony(III) chlorides of the general formula SbCl\(_{2}\)R (R=Cl, Ph, Mes) is presented. The reaction of the NHCs Me\(_{2}\)Im\(^{Me}\) (1,3,4,5-tetra-methyl-imidazolin-2-ylidene), iPr\(_{2}\)Im\(^{Me}\) (1,3-di-isopropyl-4,5-dimethyl-imidazolin-2-ylidene), Mes\(_{2}\)Im, Dipp\(_{2}\)Im (R\(_{2}\)Im=1,3-di-organyl-imidazolin-2-ylidene; Mes=2,4,6-trimethylphenyl, Dipp=2,6-di-isopropylphenyl) and cAAC\(^{Me}\) with antimony(III) compounds SbCl\(_{2}\)R (R=Cl (1), Ph (2) and Mes (3)) yields the adducts NHC ⋅ SbCl\(_{2}\)R (R=Cl (4), Ph (5) and Mes (6); NHC=Me\(_{2}\)Im\(^{Me}\) (a), iPr\(_{2}\)Im\(^{Me}\) (b), Dipp\(_{2}\)Im (c) and Mes\(_{2}\)Im (d)) and cAAC\(^{Me}\) ⋅ SbCl\(_{2}\)R (R=Cl (4 e) and Ph (5 e)). Thermal treatment of (Dipp\(_{2}\)Im) ⋅ SbCl\(_{2}\)Ar (Ar=Ph (5 c) and Mes (6 c)) in benzene leads to isomerization to the backbone coordinated \(^{a}\)NHC-adduct \(^{a}\)Dipp\(_{2}\)Im ⋅ SbCl\(_{2}\)Ar (Ar=Mes (7) and Ph (8)) (\(^{"a"}\) denotes "abnormal" coordination mode of the NHC) in high yields. One of the chloride substituents at antimony of 7 can be abstracted by GaCl3 or Ag[BF\(_{4}\)] to obtain the imidazolium salts [\(^{a}\)Dipp\(_{2}\)Im ⋅ SbClMes][BF\(_{4}\)] (9) and [\(^{a}\)Dipp\(_{2}\)Im ⋅ SbClMes][GaCl\(_{4}\)] (10).}, language = {en} } @article{PhilippBertermannRadius2022, author = {Philipp, Michael S. M. and Bertermann, R{\"u}diger and Radius, Udo}, title = {N-Heterocyclic Carbene and Cyclic (Alkyl)(amino)carbene Adducts of Germanium(IV) and Tin(IV) Chlorides and Organyl Chlorides}, series = {European Journal of Inorganic Chemistry}, volume = {2022}, journal = {European Journal of Inorganic Chemistry}, number = {32}, doi = {10.1002/ejic.202200429}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293865}, year = {2022}, abstract = {A study on the reactivity of N-heterocyclic carbenes (NHCs) and the cyclic (alkyl)(amino)carbene cAAC\(^{Me}\) with selected germanium(IV) and tin(IV) chlorides and organyl chlorides is presented. The reactions of the NHCs Me\(_{2}\)Im\(^{Me}\), iPr\(_{2}\)Im\(^{Me}\) and Dipp2Im with the methyl chlorides ECl\(_{2}\)Me\(_{2}\) afforded the adducts NHC ⋅ ECl\(_{2}\)Me\(_{2}\) (E=Ge (1), Sn (2)), NHC=Me\(_{2}\)Im\(^{Me}\) (a), iPr\(_{2}\)Im\(^{Me}\) (b), Dipp\(_{2}\)Im (c)). The reaction of Me2Im\(^{Me}\) with GeCl\(_{4}\) led to isolation of Me\(_{2}\)Im\(^{Me}\) ⋅ GeCl\(_{4}\) (3), the reaction of iPr\(_{2}\)Im\(^{Me}\) with SnCl\(_{4}\) in THF afforded the THF adduct iPr\(_{2}\)Im\(^{Me}\) ⋅ SnCl\(_{4}\) ⋅ THF (4). Dipp\(_{2}\)Im ⋅ GeCl\(_{2}\)Me\(_{2}\) (1 c) isomerized into the backbone coordinated imidazolium salt [aDipp\(_{2}\)Im ⋅ GeClMe\(_{2}\)][Cl] (5) upon thermal treatment. The reactions of cAAC\(^{Me}\) with (i) ECl\(_{2}\)R\(_{2}\) (E=Ge, Sn) gave the adducts cAAC\(^{Me}\) ⋅ ECl\(_{2}\)R\(_{2}\) (R=Me: E=Ge (6); Sn (7); Ph: E=Ge (8)), with (ii) GeClMe\(_{3}\) and GeCl\(_{4}\) the salts [cAAC\(^{Me}\) ⋅ GeMe\(_{3}\)][Cl] (9) and [cAACMeCl][GeCl\(_{3}\)] (10), and (iii) with SnCl\(_{4}\) the salt [cAACMeCl][SnCl\(_{3}\)] (11) and the adduct cAAC\(^{Me}\) ⋅ SnCl\(_{4}\) (12). Reduction of 2 a with KC\(_{8}\) afforded the NHC-stabilized stannylene Me\(_{2}\)Im\(^{Me}\) ⋅ SnMe\(_{2}\) 13, reduction of 7 with either KC8 or 1,4-bis-(trimethylsilyl)-1,4-dihydropyrazin in the presence of SnCl\(_{2}\)Me\(_{2}\) yielded cAAC\(^{Me}\) ⋅ SnMe\(_{2}\) ⋅ SnMe\(_{2}\)Cl\(_{2}\) (14).}, language = {en} }