@article{ZapfRadiusFinze2021, author = {Zapf, Ludwig and Radius, Udo and Finze, Maik}, title = {1,3-bis(tricyanoborane)imidazoline-2-ylidenate anion - a ditopic dianionic N-heterocyclic carbene ligand}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {33}, doi = {10.1002/anie.202105529}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256498}, pages = {17974-17980}, year = {2021}, abstract = {The 1,3-bis(tricyanoborane)imidazolate anion 1 was obtained in high yield from lithium imidazolate and B(CN)\(_3\)-pyridine adduct. Anion 1 is chemically very robust and thus allowed the isolation of the corresponding H\(_5\)O\(_2\)\(^+\) salt. Furthermore, monoanion 1 served as starting species for the novel dianionic N-heterocyclic carbene (NHC), 1,3-bis(tricyanoborane)imidazoline-2-ylidenate anion 3 that acts as ditopic ligand via the carbene center and the cyano groups at boron. First reactions of this new NHC 3 with methyl iodide, elemental selenium, and [Ni(CO)\(_4\)] led to the methylated imidazolate ion 4, the dianionic selenium adduct 5, and the dianionic nickel tricarbonyl complex 6. These NHC derivatives provide a first insight into the electronic and steric properties of the dianionic NHC 3. Especially the combination of properties, such as double negative charge, different coordination sites, large buried volume and good σ-donor and π-acceptor ability, make NHC 3 a unique and promising ligand and building block.}, language = {en} } @article{KraemerLuffRadiusetal.2021, author = {Kr{\"a}mer, Felix and Luff, Martin S. and Radius, Udo and Weigend, Florian and Breher, Frank}, title = {NON-Ligated N-Heterocyclic Tetrylenes}, series = {European Journal of Inorganic Chemistry}, volume = {2021}, journal = {European Journal of Inorganic Chemistry}, number = {35}, doi = {10.1002/ejic.202100446}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262586}, pages = {3591 -- 3600}, year = {2021}, abstract = {We report on the synthesis of N-heterocyclic tetrylenes ligated by the NON-donor framework 4,5-bis(2,6-diisopropylphenyl-amino)-2,7-di-tert-butyl-9,9-dimethylxanthene. The molecular structures of the germylene (3), stannylene (4) and plumbylene (5) where determined by X-ray diffraction studies. Furthermore, we present quantum chemical studies on the σ-donor and π-acceptor properties of 3-5. Additionally, we report on the reactivity of the tetrylenes towards the transition metal carbonyls [Rh(CO)\(_{2}\)Cl]\(_{2}\), [W(CO)\(_{6}\)] and [Ni(CO)\(_{4}\)]. The isolated complexes (6 and 7) show the differing reactivity of NHTs compared to NHCs. Instead of just forming the anticipated complex [(NON)Sn-Rh(CO)\(_{2}\)Cl], 4 inserts into the Rh-Cl bond to afford [(NON)Sn(Cl)Rh(CO)(C\(_{6}\)H\(_{6}\))] (6, additional CO/C6H6 exchange) and [(NON)Sn(Cl)Rh\(_{2}\)(CO)\(_{4}\)Cl] (7). By avoiding halogenated transition metal precursors in order to prevent insertion reactions, germylene 3 shows "classical" coordination chemistry towards {Ni(CO)3} forming the complex [(NON)Ge-Ni(CO)\(_{3}\)] (8).}, language = {en} } @article{TenderaHelmKrahfussetal.2021, author = {Tendera, Lukas and Helm, Moritz and Krahfuss, Mirjam and Kuntze-Fechner, Maximilian W. and Radius, Udo}, title = {Case Study of N-\(^{i}\)Pr versus N-Mes Substituted NHC Ligands in Nickel Chemistry: The Coordination and Cyclotrimerization of Alkynes at [Ni(NHC)\(_{2}\)]}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {71}, doi = {10.1002/chem.202103093}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257137}, pages = {17849-17861}, year = {2021}, abstract = {A case study on the effect of the employment of two different NHC ligands in complexes [Ni(NHC)\(_{2}\)] (NHC=\(^{i}\)Pr\(_{2}\)Im\(^{Me}\) 1\(^{Me}\), Mes\(_{2}\)Im 2) and their behavior towards alkynes is reported. The reaction of a mixture of [Ni\(_{2}\)(\(^{i}\)Pr\(_{2}\)Im\(^{Me}\))\(_{4}\)(μ-(η\(^{2}\) : η\(^{2}\))-COD)] B/ [Ni(\(^{i}\)Pr\(_{2}\)Im\(^{Me}\))\(_{2}\)(η\(^{4}\)-COD)] B' or [Ni(Mes\(_{2}\)Im)\(_{2}\)] 2, respectively, with alkynes afforded complexes [Ni(NHC)\(_{2}\)(η\(^{2}\)-alkyne)] (NHC=\(^{i}\)Pr\(_{2}\)Im\(^{Me}\): alkyne=MeC≡CMe 3, H\(_{7}\)C\(_{3}\)C≡CC\(_{3}\)H\(_{7}\) 4, PhC≡CPh 5, MeOOCC≡CCOOMe 6, Me\(_{3}\)SiC≡CSiMe\(_{3}\) 7, PhC≡CMe 8, HC≡CC\(_{3}\)H\(_{7}\) 9, HC≡CPh 10, HC≡C(p-Tol) 11, HC≡C(4-\(^{t}\)Bu-C\(_{6}\)H\(_{4}\)) 12, HC≡CCOOMe 13; NHC=Mes\(_{2}\)Im: alkyne=MeC≡CMe 14, MeOOCC≡CCOOMe 15, PhC≡CMe 16, HC≡C(4-\(^{t}\)Bu-C\(_{6}\)H\(_{4}\)) 17, HC≡CCOOMe 18). Unusual rearrangement products 11 a and 12 a were identified for the complexes of the terminal alkynes HC≡C(p-Tol) and HC≡C(4-\(^{t}\)Bu-C\(_{6}\)H\(_{4}\)), 11 and 12, which were formed by addition of a C-H bond of one of the NHC N-\(^{i}\)Pr methyl groups to the C≡C triple bond of the coordinated alkyne. Complex 2 catalyzes the cyclotrimerization of 2-butyne, 4-octyne, diphenylacetylene, dimethyl acetylendicarboxylate, 1-pentyne, phenylacetylene and methyl propiolate at ambient conditions, whereas 1\(^{Me}\) is not a good catalyst. The reaction of 2 with 2-butyne was monitored in some detail, which led to a mechanistic proposal for the cyclotrimerization at [Ni(NHC)\(_{2}\)]. DFT calculations reveal that the differences between 1\(^{Me}\) and 2 for alkyne cyclotrimerization lie in the energy profile of the initiation steps, which is very shallow for 2, and each step is associated with only a moderate energy change. The higher stability of 3 compared to 14 is attributed to a better electron transfer from the NHC to the metal to the alkyne ligand for the N-alkyl substituted NHC, to enhanced Ni-alkyne backbonding due to a smaller C\(_{NHC}\)-Ni-C\(_{NHC}\) bite angle, and to less steric repulsion of the smaller NHC \(^{i}\)Pr\(_{2}\)Im\(^{Me}\).}, language = {en} } @article{HuangWuKrebsetal.2021, author = {Huang, Mingming and Wu, Zhu and Krebs, Johannes and Friedrich, Alexandra and Luo, Xiaoling and Westcott, Stephen A. and Radius, Udo and Marder, Todd B.}, title = {Ni-Catalyzed Borylation of Aryl Sulfoxides}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {31}, doi = {10.1002/chem.202100342}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256778}, pages = {8149-8158}, year = {2021}, abstract = {A nickel/N-heterocyclic carbene (NHC) catalytic system has been developed for the borylation of aryl sulfoxides with B\(_{2}\)(neop)\(_{2}\) (neop=neopentyl glycolato). A wide range of aryl sulfoxides with different electronic and steric properties were converted into the corresponding arylboronic esters in good yields. The regioselective borylation of unsymmetric diaryl sulfoxides was also feasible leading to borylation of the sterically less encumbered aryl substituent. Competition experiments demonstrated that an electron-deficient aryl moiety reacts preferentially. The origin of the selectivity in the Ni-catalyzed borylation of electronically biased unsymmetrical diaryl sulfoxide lies in the oxidative addition step of the catalytic cycle, as oxidative addition of methoxyphenyl 4-(trifluoromethyl)phenyl sulfoxide to the Ni(0) complex occurs selectively to give the structurally characterized complex trans-[Ni(ICy)\(_{2}\)(4-CF\(_{3}\)-C\(_{6}\)H\(_{4}\)){(SO)-4-MeO-C\(_{6}\)H\(_{4}\)}] 4. For complex 5, the isomer trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(OSC\(_{6}\)H\(_{5}\))] 5-I was structurally characterized in which the phenyl sulfinyl ligand is bound via the oxygen atom to nickel. In solution, the complex trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(OSC\(_{6}\)H\(_{5}\))] 5-I is in equilibrium with the S-bonded isomer trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(SOC\(_{6}\)H\(_{5}\))] 5, as shown by NMR spectroscopy. DFT calculations reveal that these isomers are separated by a mere 0.3 kJ/mol (M06/def2-TZVP-level of theory) and connected via a transition state trans-[Ni(ICy)\(_{2}\)(C\(_{6}\)H\(_{5}\))(η\(^{2}\)-{SO}-C\(_{6}\)H\(_{5}\))], which lies only 10.8 kcal/mol above 5.}, language = {en} } @article{LiuKoleBudimanetal.2021, author = {Liu, Zhiqiang and Kole, Goutam Kumar and Budiman, Yudha P. and Tian, Ya-Ming and Friedrich, Alexandra and Luo, Xiaoling and Westcott, Stephen A. and Radius, Udo and Marder, Todd B.}, title = {Transition metal catalyst-free, base-promoted 1,2-additions of polyfluorophenylboronates to aldehydes and ketones}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {30}, doi = {10.1002/anie.202103686}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256487}, pages = {16529-16538}, year = {2021}, abstract = {A novel protocol for the transition metal-free 1,2-addition of polyfluoroaryl boronate esters to aldehydes and ketones is reported, which provides secondary alcohols, tertiary alcohols, and ketones. Control experiments and DFT calculations indicate that both the ortho-F substituents on the polyfluorophenyl boronates and the counterion K\(^+\) in the carbonate base are critical. The distinguishing features of this procedure include the employment of commercially available starting materials and the broad scope of the reaction with a wide variety of carbonyl compounds giving moderate to excellent yields. Intriguing structural features involving O-H⋅⋅⋅O and O-H⋅⋅⋅N hydrogen bonding, as well as arene-perfluoroarene interactions, in this series of racemic polyfluoroaryl carbinols have also been addressed.}, language = {en} } @article{BudimanWestcottRadiusetal.2021, author = {Budiman, Yudha P. and Westcott, Stephen A. and Radius, Udo and Marder, Todd B.}, title = {Fluorinated Aryl Boronates as Building Blocks in Organic Synthesis}, series = {Advanced Synthesis \& Catalysis}, volume = {363}, journal = {Advanced Synthesis \& Catalysis}, number = {9}, doi = {10.1002/adsc.202001291}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225908}, pages = {2224 -- 2255}, year = {2021}, abstract = {Organoboron compounds are well known building blocks for many organic reactions. However, under basic conditions, polyfluorinated aryl boronic acid derivatives suffer from instability issues that are accelerated in compounds containing an ortho-fluorine group, which result in the formation of the corresponding protodeboronation products. Therefore, a considerable amount of research has focused on novel methodologies to synthesize these valuable compounds while avoiding the protodeboronation issue. This review summarizes the latest developments in the synthesis of fluorinated aryl boronic acid derivatives and their applications in cross-coupling reactions and other transformations. image}, language = {en} } @article{PhilippKrahfussRadackietal.2021, author = {Philipp, Michael S. M. and Krahfuss, Mirjam J. and Radacki, Krzysztof and Radius, Udo}, title = {N-Heterocyclic Carbene and Cyclic (Alkyl)(amino)carbene Adducts of Antimony(III)}, series = {European Journal of Inorganic Chemistry}, volume = {2021}, journal = {European Journal of Inorganic Chemistry}, number = {38}, doi = {10.1002/ejic.202100632}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257408}, pages = {4007-4019}, year = {2021}, abstract = {A systematic study on Lewis-acid/base adducts of N-heterocyclic carbenes (NHCs) and the cyclic (alkyl)(amino)carbene cAAC\(^{Me}\) (1-(2,6-di-iso-propylphenyl)-3,3,5,5-tetramethyl-pyrrolidin-2-ylidene) with antimony(III) chlorides of the general formula SbCl\(_{2}\)R (R=Cl, Ph, Mes) is presented. The reaction of the NHCs Me\(_{2}\)Im\(^{Me}\) (1,3,4,5-tetra-methyl-imidazolin-2-ylidene), iPr\(_{2}\)Im\(^{Me}\) (1,3-di-isopropyl-4,5-dimethyl-imidazolin-2-ylidene), Mes\(_{2}\)Im, Dipp\(_{2}\)Im (R\(_{2}\)Im=1,3-di-organyl-imidazolin-2-ylidene; Mes=2,4,6-trimethylphenyl, Dipp=2,6-di-isopropylphenyl) and cAAC\(^{Me}\) with antimony(III) compounds SbCl\(_{2}\)R (R=Cl (1), Ph (2) and Mes (3)) yields the adducts NHC ⋅ SbCl\(_{2}\)R (R=Cl (4), Ph (5) and Mes (6); NHC=Me\(_{2}\)Im\(^{Me}\) (a), iPr\(_{2}\)Im\(^{Me}\) (b), Dipp\(_{2}\)Im (c) and Mes\(_{2}\)Im (d)) and cAAC\(^{Me}\) ⋅ SbCl\(_{2}\)R (R=Cl (4 e) and Ph (5 e)). Thermal treatment of (Dipp\(_{2}\)Im) ⋅ SbCl\(_{2}\)Ar (Ar=Ph (5 c) and Mes (6 c)) in benzene leads to isomerization to the backbone coordinated \(^{a}\)NHC-adduct \(^{a}\)Dipp\(_{2}\)Im ⋅ SbCl\(_{2}\)Ar (Ar=Mes (7) and Ph (8)) (\(^{"a"}\) denotes "abnormal" coordination mode of the NHC) in high yields. One of the chloride substituents at antimony of 7 can be abstracted by GaCl3 or Ag[BF\(_{4}\)] to obtain the imidazolium salts [\(^{a}\)Dipp\(_{2}\)Im ⋅ SbClMes][BF\(_{4}\)] (9) and [\(^{a}\)Dipp\(_{2}\)Im ⋅ SbClMes][GaCl\(_{4}\)] (10).}, language = {en} } @article{BudimanLorenzenLiuetal.2021, author = {Budiman, Yudha P. and Lorenzen, Sabine and Liu, Zhiqiang and Radius, Udo and Marder, Todd B.}, title = {Base-Free Pd-Catalyzed C-Cl Borylation of Fluorinated Aryl Chlorides}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {11}, doi = {10.1002/chem.202004648}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225687}, pages = {3869 -- 3874}, year = {2021}, abstract = {Catalytic C-X borylation of aryl halides containing two ortho-fluorines has been found to be challenging, as most previous methods require stoichiometric amounts of base and the polyfluorinated aryl boronates suffer from protodeboronation, which is accelerated by ortho-fluorine substituents. Herein, we report that a combination of Pd(dba)2 (dba=dibenzylideneacetone) with SPhos (2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl) as a ligand is efficient to catalyze the C-Cl borylation of aryl chlorides containing two ortho-fluorine substituents. This method, conducted under base-free conditions, is compatible with the resulting di-ortho-fluorinated aryl boronate products which are sensitive to base.}, language = {en} } @article{KrahfussRadius2021, author = {Krahfuss, Mirjam J. and Radius, Udo}, title = {N-Heterocyclic Silylene Main Group Element Chemistry: Adduct Formation, Insertion into E-X Bonds and Cyclization of Organoazides}, series = {European Journal of Inorganic Chemistry}, volume = {2021}, journal = {European Journal of Inorganic Chemistry}, number = {6}, doi = {10.1002/ejic.202000942}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224507}, pages = {548 -- 561}, year = {2021}, abstract = {Investigations concerning the reactivity of the N-heterocyclic silylene Dipp\(_{2}\)NHSi (1, 1,3-bis(2,6-diisopropylphenyl)-1,3-diaza-2-silacyclopent-4-en-2-ylidene) towards selected alanes and boranes, elemental halides X\(_{2}\) (X=Br, I), selected halide containing substrates such as tin chlorides and halocarbons, as well as organoazides are presented. The NHSi adducts Dipp\(_{2}\)NHSi⋅AlI\(_{3}\) (2), Dipp\(_{2}\)NHSi⋅Al(C\(_{6}\)F\(_{5}\))\(_{3}\) (3), and Dipp\(_{2}\)NHSi⋅B(C\(_{6}\)F\(_{5}\))\(_{3}\) (4) were formed by the reaction of Dipp\(_{2}\)NHSi with the corresponding Lewis acids AlI\(_{3}\), Al(C\(_{6}\)F\(_{6}\))\(_{3}\) and B(C\(_{6}\)F\(_{5}\))\(_{3}\). Adducts 3 and 4 were tested with respect to their ability to activate small organic molecules, but no frustrated Lewis pair reactivity was observed. Reactions of Dipp\(_{2}\)NHSi with Br\(_{2}\), I\(_{2}\), Ph\(_{2}\)SnCl\(_{2}\) and Me\(_{3}\)SnCl led to formation of Dipp\(_{2}\)NHSiBr\(_{2}\) (5), Dipp\(_{2}\)NHSiI\(_{2}\) (6), Dipp\(_{2}\)NHSiCl\(_{2}\) (7) and {(Me\(_{3}\)Sn)N(Dipp)CH}\(_{2}\) (8), respectively. The reaction with the halocarbons methyl iodide, benzyl chloride, and benzyl bromide afforded the insertion products Dipp\(_{2}\)NHSi(I)(CH\(_{3}\)) (9), Dipp\(_{2}\)NHSi(Cl)(CH\(_{2}\)Ph) (10) and Dipp\(_{2}\)NHSi(Br)(CH\(_{2}\)Ph) (11). Reaction of Dipp\(_{2}\)NHSi with the organoazides Ad-N\(_{3}\) (Ad=adamantyl) and TMS-N\(_{3}\) (TMS=trimethylsilyl) led to the formation of 1-Dipp\(_{2}\)NHSi-2,5-bis(adamantyl)-tetrazoline (12) and bis(trimethylsilyl)amido azido silane (13), respectively. For 2,6-(diphenyl)phenyl-N\(_{3}\) C-H activation occurs and a cyclosilamine 14 was isolated.}, language = {en} } @article{LuisHorrerPhilippetal.2021, author = {Luis, Werner and Horrer, G{\"u}nther and Philipp, Michael and Lubitz, Katharina and Kuntze-Fechner, Maximilian W. and Radius, Udo}, title = {A General Synthetic Route to NHC-Phosphinidenes: NHC-mediated Dehydrogenation of Primary Phosphines}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, volume = {647}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, number = {8}, doi = {10.1002/zaac.202000405}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258016}, pages = {881-895}, year = {2021}, abstract = {The dehydrocoupling of primary phosphines with N-heterocyclic carbenes (NHCs) to yield NHC-phosphinidenes is reported. The reaction of two equivalents of the NHCs Me\(_2\)Im (1,3-dimethylimidazolin-2-ylidene), Me\(_4\)Im (1,3,4,5-tetramethylimidazolin-2-ylidene), iPr\(_2\)Im (1,3-di-iso-propylimidazolin-2-ylidene) and Mes\(_2\)Im (2,4,6-trimethylphenylimidazolin-2-ylidene) with PhPH\(_2\) and MesPH\(_2\) led to the NHC stabilized phosphinidenes (NHC)PAr: (iPr\(_2\)Im)PPh (1), (Mes\(_2\)Im)PPh (2), (Me\(_4\)Im)PPh (3), (Mes\(_2\)Im)PMes (4), (Me\(_2\)Im)PMes (5), (Me\(_4\)Im)PMes (6) and (iPr\(_2\)Im)PMes (7). The reaction of tBuPH\(_2\) with two equivalents of the NHCs afforded the corresponding NHC stabilized parent phosphinidenes (NHC)PH: (iPr\(_2\)Im)PH (8), (Mes\(_2\)Im)PH (9) and (Me\(_4\)Im)PH (10). Reaction of 1 with oxygen and sulfur led to isolation of iPr\(_2\)Im-P(O)\(_2\)Ph (11) and iPr\(_2\)Im-P(S)\(_2\)Ph (12), whereas the reaction with elemental selenium and tellurium gave (NHC)PPh cleavage with formation of (iPr\(_2\)Im)Se (13), iPr\(_2\)ImTe (14) and different cyclo-oligophosphines. Furthermore, the complexes [{(iPr\(_2\)Im)PPh}W(CO)\(_5\)] (15), [Co(CO)\(_2\)(NO){(iPr\(_2\)Im)PPh}] (16) and [(η\(^5\)-C\(_5\)Me\(_2\))Co(η\(^2\)-C\(_2\)H\(_4\)){(iPr\(_2\)Im)PPh}] (17) have been prepared starting from 1 and a suitable transition metal complex precursor. The complexes 16 and 17 decompose in solution upon heating to ca. 80 °C to yield the NHC complexes [Co(iPr\(_2\)Im)(CO)\(_2\)(NO)] and [(η\(^5\)-C\(_5\)Me\(_5\))Co(iPr\(_2\)Im)(η\(^2\)-C\(_2\)H\(_4\))] with formation of cyclo-oligophosphines. The reaction of 1 with [Ni(COD)\(_2\)] afforded the diphosphene complex [Ni(iPr\(_2\)Im)\(_2\)(trans-PhP=PPh)] 18.}, language = {en} }