@article{BeykanDamEberleinetal.2016, author = {Beykan, Seval and Dam, Jan S. and Eberlein, Uta and Kaufmann, Jens and Kj{\ae}rgaard, Benedict and J{\o}dal, Lars and Bouterfa, Hakim and Bejot, Romain and Lassmann, Michael and Jensen, Svend Borup}, title = {\(^{177}\)Lu-OPS201 targeting somatostatin receptors: in vivo biodistribution and dosimetry in a pig model}, series = {EJNMMI Research}, volume = {6}, journal = {EJNMMI Research}, number = {50}, doi = {10.1186/s13550-016-0204-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146888}, year = {2016}, abstract = {Background \(^{177}\)Lu is used in peptide receptor radionuclide therapies for the treatment of neuroendocrine tumors. Based on the recent literature, SST2 antagonists are superior to agonists in tumor uptake. The compound OPS201 is the novel somatostatin antagonist showing the highest SST2 affinity. The aim of this study was to measure the in vivo biodistribution and dosimetry of \(^{177}\)Lu-OPS201 in five anesthetized Danish Landrace pigs as an appropriate substitute for humans to quantitatively assess the absorbed doses for future clinical applications. Results \(^{177}\)Lu-OPS201 was obtained with a specific activity ranging from 10 to 17 MBq/μg. Prior to administration, the radiochemical purity was measured as s > 99.7 \% in all cases. After injection, fast clearance of the compound from the blood stream was observed. Less than 5 \% of the injected activity was presented in blood 10 min after injection. A series of SPECT/CT and whole-body scans conducted until 10 days after intravenous injection showed uptake mostly in the liver, spine, and kidneys. There was no visible uptake in the spleen. Blood samples were taken to determine the time-activity curve in the blood. Time-activity curves and time-integrated activity coefficients were calculated for the organs showing visible uptake. Based on these data, the absorbed organ dose coefficients for a 70-kg patient were calculated with OLINDA/EXM. For humans after an injection of 5 GBq \(^{177}\)Lu-OPS201, the highest predicted absorbed doses are obtained for the kidneys (13.7 Gy), the osteogenic cells (3.9 Gy), the urinary bladder wall (1.8 Gy), and the liver (1.0 Gy). No metabolites of 177Lu-OPS201 were found by radio HPLC analysis. None of the absorbed doses calculated will exceed organ toxicity levels. Conclusions The \(^{177}\)Lu-OPS201 was well tolerated and caused no abnormal physiological or behavioral signs. In vivo distributions and absorbed doses of pigs are comparable to those observed in other publications. According to the biodistribution data in pigs, presented in this work, the expected radiation exposure in humans will be within the acceptable range.}, language = {en} } @phdthesis{Eberlein2015, author = {Eberlein, Uta}, title = {Zusammenhang zwischen physikalischer Dosimetrie und DNA Doppelstrangbr{\"u}chen in Lymphozyten nach Radionuklidtherapie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120440}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In der nuklearmedizinischen Therapie werden Radiopharmaka meist systemisch verabreicht. Prim{\"a}r werden daf{\"u}r, wegen der kurzen Reichweite, beta-Strahler eingesetzt. Als Folge davon verteilt sich das Radiopharmakon im K{\"o}rper, reichert sich in Organen und Zielstrukturen an und bestrahlt somit den K{\"o}rper intern, im Gegensatz zur externen Bestrahlung bei der Strahlentherapie. Das Verteilungsmuster der verabreichten Aktivit{\"a}t im K{\"o}rper wird durch die chemischen und physikalischen Eigenschaften des Radiopharmakons bestimmt. Außerdem sind die Aktivit{\"a}t und die Art der Anreicherung ausschlaggebend f{\"u}r die durch ionisierende Strahlung deponierte Energie im K{\"o}rper, der Energiedosis. Gemeinsam haben externe und interne Bestrahlungsverfahren, dass der Patient ionisierender Strahlung ausgesetzt ist, die nicht nur die kranken Zellen zerst{\"o}rt, sondern auch gesunde Zellen sch{\"a}digen kann. Dies geschieht durch direkte oder indirekte Wechselwirkung der Strahlung mit der DNA, die zur Sch{\"a}digung der DNA-Struktur f{\"u}hrt. Am h{\"a}ufigsten sind dabei Einzelstrangbr{\"u}che und Basensch{\"a}den. Die Doppelstrangbr{\"u}che sind im Vergleich zu Einzelstrangbr{\"u}chen und Basensch{\"a}den sehr selten aber sehr viel sch{\"a}dlicher f{\"u}r die Zelle, da die Reparatur komplizierter ist. Somit sind diese prim{\"a}r f{\"u}r den Zelltod oder f{\"u}r die Folgen nach fehlerhafter Reparatur verantwortlich. Eine sehr schnelle Antwort auf strahleninduzierte oder durch andere Stoffe, wie z.B. zytotoxische Substanzen, induzierte Doppelstrangbr{\"u}che ist die Phosphorylierung der Histon H2 Variante H2AX, die gamma-H2AX genannt wird. Zus{\"a}tzlich reichert sich das Protein 53BP1 nach dem Erkennen eines Doppelstrangbruches durch Sensorproteine sofort am Chromatin, das den Doppelstrang umgibt, an. Damit ist 53BP1 ein weiterer Biomarker, der strahleninduzierte Doppelstrangbr{\"u}che sehr effektiv nachweisen kann und der auf sehr verl{\"a}ssliche Weise mit gamma-H2AX kolokalisiert. Mittels Immunfluoreszenzf{\"a}rbung lassen sich gamma-H2AX und 53BP1 als umschriebene „Foci", im Zellkern mikroskopisch darstellen und z{\"a}hlen. Unter der Annahme, dass ein Focus einem Doppelstrangbruch entspricht, kann die Anzahl der Foci im Zellkern als quantitativer Biomarker f{\"u}r DNA Doppelstrangbr{\"u}che und damit f{\"u}r die Strahlenexposition und Strahlenwirkung verwendet werden. Zudem zeigen Studien der Induktion von gamma-H2AX nach externer Bestrahlung von unterschiedlichen Gewebearten Linearit{\"a}t zwischen der Energiedosis und der Zahl der Foci im Zellkern. Weitere Studien besch{\"a}ftigen sich mit den Auswirkungen externer Bestrahlung auf Patienten, aber nur wenige mit offenen radioaktiven Substanzen. Ziele dieser Arbeit waren daher: 1. Die Generierung einer bisher noch nicht beschriebenen in-vitro Kalibrierkurve nach interner Bestrahlung von Vollblut mit den in der Therapie eingesetzten beta-Strahlern. 2. Die gleichzeitige Bestimmung der physikalischen Dosis sowie der strahleninduzierten Anzahl der Foci in Lymphozyten, gewonnen aus Blutproben von Patienten nach Radiopeptidtherapie mit Lu-177 und Radioiodtherapie mit I-131. 3. Eine umfassende Beschreibung der Induktion und der Abnahme der Foci in den Lymphozyten aus den Blutproben der Patienten unter Einbeziehung der in-vitro Kalibrierung, um den dosis- und zeitabh{\"a}ngigen Verlauf der Anzahl der strahleninduzierten Foci zu bestimmen. F{\"u}r die in-vitro Kalibrierung mit I-131 und Lu-177 wurden bei Probanden Blutproben gewonnen und mit unterschiedlichen Aktivit{\"a}tskonzentrationen erg{\"a}nzt. Das Ziel war, eine Energiedosis bis 100mGy zu erhalten. Das Ergebnis war, dass sich die Zahl der strahleninduzierten Foci in Abh{\"a}ngigkeit von der Energiedosis gut durch eine lineare Funktion beschreiben l{\"a}sst, so wie es auch f{\"u}r die externe Bestrahlung bereits gezeigt wurde. Die Patientenstudien befassten sich mit dem Zusammenhang zwischen der im Blut deponierten Energiedosis und der Anzahl und dem zeitlichen Verlauf der induzierten Doppelstrangbr{\"u}che im peripheren Blut von Patienten unter Peptidrezeptor-Radionuklidtherapie mit Lu-177 DOTATATE/-TOC und Patienten unter Radioiodtherapie mit I-131 bei Ablationstherapien nach Operation eines differenzierten Schilddr{\"u}senkarzinoms. Die durchschnittliche Anzahl induzierter DSB-Foci zeigte in den fr{\"u}hen Zeitpunkten einen linearen dosisabh{\"a}ngigen Anstieg. In den ersten Stunden nach Therapie stimmten die in-vitro Kalibrierung und die Zahl der strahleninduzierten Foci sowohl f{\"u}r Lu-177 als auch f{\"u}r I-131 f{\"u}r die Patientendaten gut {\"u}berein. Die sp{\"a}teren Zeitpunkte werden durch eine Abnahme der Dosisrate und der Foci-Anzahl, bedingt durch Reparatur der DNA-Sch{\"a}den, charakterisiert. {\"U}berstiegen die Blutdosiswerte in der ersten Stunde jedoch 20mGy (nur nach I-131-Gabe beobachtet), dann war die Induktion eines schnellen Reparaturprozesses festzustellen. Diese experimentellen Ergebnissen und Modellierungen beschreiben erstmalig die Dosisabh{\"a}ngigkeit und den zeitlichen Verlauf der in-vitro und in-vivo DNA-Schadensantwort nach Inkorporation von beta-emittierenden Radionukliden.}, subject = {DNS-Doppelstrangbruch}, language = {de} } @article{EberleinBroeerVandevoordeetal.2011, author = {Eberlein, Uta and Br{\"o}er, J{\"o}rn Hendrik and Vandevoorde, Charlot and Santos, Paula and Bardi{\`e}s, Manuel and Bacher, Klaus and Nosske, Dietmar and Lassmann, Michael}, title = {Biokinetics and dosimetry of commonly used radiopharmaceuticals in diagnostic nuclear medicine - a review}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, volume = {38}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, number = {12}, doi = {10.1007/s00259-011-1904-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133846}, pages = {2269-2281}, year = {2011}, abstract = {Purpose The impact on patients' health of radiopharmaceuticals in nuclear medicine diagnostics has not until now been evaluated systematically in a European context. Therefore, as part of the EU-funded Project PEDDOSE.NET (www.​peddose.​net), we review and summarize the current knowledge on biokinetics and dosimetry of commonly used diagnostic radiopharmaceuticals. Methods A detailed literature search on published biokinetic and dosimetric data was performed mostly via PubMed (www.​ncbi.​nlm.​nih.​gov/​pubmed). In principle the criteria for inclusion of data followed the EANM Dosimetry Committee guidance document on good clinical reporting. Results Data on dosimetry and biokinetics can be difficult to find, are scattered in various journals and, especially in paediatric nuclear medicine, are very scarce. The data collection and calculation methods vary with respect to the time-points, bladder voiding, dose assessment after the last data point and the way the effective dose was calculated. In many studies the number of subjects included for obtaining biokinetic and dosimetry data was fewer than ten, and some of the biokinetic data were acquired more than 20 years ago. Conclusion It would be of interest to generate new data on biokinetics and dosimetry in diagnostic nuclear medicine using state-of-the-art equipment and more uniform dosimetry protocols. For easier public access to dosimetry data for diagnostic radiopharmaceuticals, a database containing these data should be created and maintained.}, language = {en} } @article{DicksonEberleinLassmann2022, author = {Dickson, John and Eberlein, Uta and Lassmann, Michael}, title = {The effect of modern PET technology and techniques on the EANM paediatric dosage card}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, volume = {49}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, number = {6}, issn = {1619-7089}, doi = {10.1007/s00259-021-05635-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265624}, pages = {1964-1969}, year = {2022}, abstract = {Aim Recent advancements in PET technology have brought with it significant improvements in PET performance and image quality. In particular, the extension of the axial field of view of PET systems, and the introduction of semiconductor technology into the PET detector, initially for PET/MR, and more recently available long-field-of-view PET/CT systems (≥ 25 cm) have brought a step change improvement in the sensitivity of PET scanners. Given the requirement to limit paediatric doses, this increase in sensitivity is extremely welcome for the imaging of children and young people. This is even more relevant with PET/MR, where the lack of CT exposures brings further dose reduction benefits to this population. In this short article, we give some details around the benefits around new PET technology including PET/MR and its implications on the EANM paediatric dosage card. Material and methods Reflecting on EANM adult guidance on injected activities, and making reference to bed overlap and the concept of MBq.min bed\(^{-1}\) kg\(^{-1}\), we use published data on image quality from PET/MR systems to update the paediatric dosage card for PET/MR and extended axial field of view (≥ 25 cm) PET/CT systems. However, this communication does not cover the expansion of paediatric dosing for the half-body and total-body scanners that have recently come to market. Results In analogy to the existing EANM dosage card, new parameters for the EANM paediatric dosage card were developed (class B, baseline value: 10.7 MBq, minimum recommended activity 10 MBq). The recommended administered activities for the systems considered in this communication range from 11 MBq [\(^{18}\)F]FDG for a child with a weight of 3 kg to 149 MBq [\(^{18}\)F]FDG for a paediatric patient weight of 68 kg, assuming a scan of 3 min per bed position. The mean effective dose over all ages (1 year and older) is 2.85 mSv. Conclusion With this, recommendations for paediatric dosing are given for systems that have not been considered previously.}, language = {en} } @article{EberleinPeperFernandezetal.2015, author = {Eberlein, Uta and Peper, Michel and Fern{\´a}ndez, Maria and Lassmann, Michael and Scherthan, Harry}, title = {Calibration of the \(\gamma\)-H2AX DNA double strand break focus assay for internal radiation exposure of blood lymphocytes}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0123174}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148697}, pages = {e0123174}, year = {2015}, abstract = {DNA double strand break (DSB) formation induced by ionizing radiation exposure is indicated by the DSB biomarkers \(\gamma\)-H2AX and 53BP1. Knowledge about DSB foci formation in-vitro after internal irradiation of whole blood samples with radionuclides in solution will help us to gain detailed insights about dose-response relationships in patients after molecular radiotherapy (MRT). Therefore, we studied the induction of radiation-induced co-localizing \(\gamma\)-H2AX and 53BP1 foci as surrogate markers for DSBs in-vitro, and correlated the obtained foci per cell values with the in-vitro absorbed doses to the blood for the two most frequently used radionuclides in MRT (I-131 and Lu-177). This approach led to an in-vitro calibration curve. Overall, 55 blood samples of three healthy volunteers were analyzed. For each experiment several vials containing a mixture of whole blood and radioactive solutions with different concentrations of isotonic NaCl-diluted radionuclides with known activities were prepared. Leukocytes were recovered by density centrifugation after incubation and constant blending for 1 h at 37°C. After ethanol fixation they were subjected to two-color immunofluorescence staining and the average frequencies of the co-localizing \(\gamma\)-H2AX and 53BP1 foci/nucleus were determined using a fluorescence microscope equipped with a red/green double band pass filter. The exact activity was determined in parallel in each blood sample by calibrated germanium detector measurements. The absorbed dose rates to the blood per nuclear disintegrations occurring in 1 ml of blood were calculated for both isotopes by a Monte Carlo simulation. The measured blood doses in our samples ranged from 6 to 95 mGy. A linear relationship was found between the number of DSB-marking foci/nucleus and the absorbed dose to the blood for both radionuclides studied. There were only minor nuclide-specific intra-and inter-subject deviations.}, language = {en} } @article{LassmannEberlein2023, author = {Lassmann, Michael and Eberlein, Uta}, title = {Comparing absorbed doses and radiation risk of the α-emitting bone-seekers [\(^{223}\)Ra]RaCl\(_2\) and [\(^{224}\)Ra]RaCl\(_2\)}, series = {Frontiers in Medicine}, volume = {9}, journal = {Frontiers in Medicine}, issn = {2296-858X}, doi = {10.3389/fmed.2022.1057373}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301509}, year = {2023}, abstract = {[\(^{223}\)Ra]RaCl\(_2\) and [\(^{224}\)Ra]RaCl\(_2\) are bone seekers, emitting high LET, and short range (< 100 μm) alpha-particles. Both radionuclides show similar decay properties; the total alpha energies are comparable (\(^{223}\)Ra: ≈28 MeV, \(^{224}\)Ra: ≈26 MeV). [\(^{224}\)Ra]RaCl\(_2\) has been used from the mid-1940s until 1990 for treating different bone and joint diseases with activities of up to approximately 50 MBq [\(^{224}\)Ra]RaCl\(_2\). In 2013 [\(^{223}\)Ra]RaCl\(_2\) obtained marketing authorization by the FDA and by the European Union for the treatment of metastatic prostate cancer with an activity to administer of 0.055 MBq per kg body weight for six cycles. For intravenous injections in humans a model calculation using the biokinetic model of ICRP67 shows a ratio of organ absorbed dose coefficients (\(^{224}\)Ra:\(^{223}\)Ra) between 0.37 (liver) and 0.97 except for the kidneys (2.27) and blood (1.57). For the red marrow as primary organ-at-risk, the ratio is 0.57. The differences are mainly caused be the differing half-lives of the decay products of both radium isotopes. Both radionuclides show comparable DNA damage patterns in peripheral blood mononuclear cells after internal ex-vivo irradiation. Data on the long-term radiation-associated side effects are only available for treatment with [\(^{224}\)Ra]RaCl\(_2\). Two epidemiological studies followed two patient groups treated with [\(^{224}\)Ra]RaCl\(_2\) for more than 25 years. One of them was the "Spiess study", a cohort of 899 juvenile patients who received several injections of [\(^{224}\)Ra]RaCl\(_2\) with a mean specific activity of 0.66 MBq/kg. Another patient group of ankylosing spondylitis patients was treated with 10 repeated intravenous injections of [\(^{224}\)Ra]RaCl\(_2\), 1 MBq each, 1 week apart. In total 1,471 of these patients were followed-up in the "Wick study". In both studies, an increased cancer mortality by leukemia and solid cancers was observed. Similar considerations on long-term effects likely apply to [\(^{223}\)Ra]RaCl\(_2\) as well since the biokinetics are similar and the absorbed doses in the same range. However, this increased risk will most likely not be observed due to the much shorter life expectancy of prostate cancer patients treated with [\(^{223}\)Ra]RaCl\(_2\).}, language = {en} } @article{SchumannEberleinMuhtadietal.2018, author = {Schumann, Sarah and Eberlein, Uta and Muhtadi, Razan and Lassmann, Michael and Scherthan, Harry}, title = {DNA damage in leukocytes after internal ex-vivo irradiation of blood with the α-emitter Ra-223}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {2286}, doi = {10.1038/s41598-018-20364-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175596}, year = {2018}, abstract = {Irradiation with high linear energy transfer α-emitters, like the clinically used Ra-223 dichloride, severely damages cells and induces complex DNA damage including closely spaced double-strand breaks (DSBs). As the hematopoietic system is an organ-at-risk for the treatment, knowledge about Ra-223-induced DNA damage in blood leukocytes is highly desirable. Therefore, 36 blood samples from six healthy volunteers were exposed ex-vivo (in solution) to different concentrations of Ra-223. Absorbed doses to the blood were calculated assuming local energy deposition of all α- and β-particles of the decay, ranging from 0 to 142 mGy. γ-H2AX + 53BP1 co-staining and analysis was performed in leukocytes isolated from the irradiated blood samples. For DNA damage quantification, leukocyte samples were screened for occurrence of α-induced DNA damage tracks and small γ-H2AX + 53BP1 DSB foci. This revealed a linear relationship between the frequency of α-induced γ-H2AX damage tracks and the absorbed dose to the blood, while the frequency of small γ-H2AX + 53BP1 DSB foci indicative of β-irradiation was similar to baseline values, being in agreement with a negligible β-contribution (3.7\%) to the total absorbed dose to the blood. Our calibration curve will contribute to the biodosimetry of Ra-223-treated patients and early after incorporation of α-emitters.}, language = {en} } @article{SchumannScherthanFranketal.2020, author = {Schumann, Sarah and Scherthan, Harry and Frank, Torsten and Lapa, Constantin and M{\"u}ller, Jessica and Seifert, Simone and Lassmann, Michael and Eberlein, Uta}, title = {DNA Damage in Blood Leukocytes of Prostate Cancer Patients Undergoing PET/CT Examinations with [\(^{68}\)Ga]Ga-PSMA I\&T}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {2}, issn = {2072-6694}, doi = {10.3390/cancers12020388}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200585}, pages = {388}, year = {2020}, abstract = {The aim was to investigate the induction and repair of radiation-induced DNA double-strand breaks (DSBs) as a function of the absorbed dose to the blood of patients undergoing PET/CT examinations with [68Ga]Ga-PSMA. Blood samples were collected from 15 patients before and at four time points after [68Ga]Ga-PSMA administration, both before and after the PET/CT scan. Absorbed doses to the blood were calculated. In addition, blood samples with/without contrast agent from five volunteers were irradiated ex vivo by CT while measuring the absorbed dose. Leukocytes were isolated, fixed, and stained for co-localizing γ-H2AX+53BP1 DSB foci that were enumerated manually. In vivo, a significant increase in γ-H2AX+53BP1 foci compared to baseline was observed at all time points after administration, although the absorbed dose to the blood by 68Ga was below 4 mGy. Ex vivo, the increase in radiation-induced foci depended on the absorbed dose and the presence of contrast agent, which could have caused a dose enhancement. The CT-dose contribution for the patients was estimated at about 12 mGy using the ex vivo calibration. The additional number of DSB foci induced by CT, however, was comparable to the one induced by 68Ga. The significantly increased foci numbers after [68Ga]Ga-PSMA administration may suggest a possible low-dose hypersensitivity.}, language = {en} } @article{SchuhmannEberleinMuelleretal.2018, author = {Schuhmann, Sarah and Eberlein, Uta and M{\"u}ller, Jessica and Scherthan, Harry and Lassmann, Michael}, title = {Correlation of the absorbed dose to the blood and DNA damage in leukocytes after internal ex-vivo irradiation of blood samples with Ra-224}, series = {EJNMMI Research}, volume = {8}, journal = {EJNMMI Research}, number = {77}, doi = {10.1186/s13550-018-0422-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176593}, year = {2018}, abstract = {Background: Irradiation with α-particles creates densely packed damage tracks along particle trajectories in exposed cells, including complex DNA damage and closely spaced double-strand breaks (DSBs) in hit nuclei. Here, we investigated the correlation of the absorbed dose to the blood and the number of α-induced DNA damage tracks elicited in human blood leukocytes after ex-vivo in-solution exposure with Ra-224. The aim was to compare the data to previously published data on Ra-223 and to investigate differences in DNA damage induction between the two radium isotopes. Results: Blood samples from three healthy volunteers were exposed ex-vivo to six different concentrations of Ra-224 dichloride. Absorbed doses to the blood were calculated assuming local energy deposition of all α- and β-particles of the Ra-224 decay chain, ranging from 0 to 127 mGy. γ-H2AX + 53BP1 DNA damage co-staining and analysis was performed on ethanol-fixed leukocytes isolated from the irradiated blood samples. For damage quantification, α-induced DNA damage tracks and small γ-H2AX + 53BP1 DSB foci were enumerated in the exposed leukocytes. This revealed a linear relationship between the frequency of α-induced γ-H2AX damage tracks and the absorbed dose to the blood, while the frequency of small γ-H2AX + 53BP1 DSB foci indicative of β-irradiation was similar to baseline values. Conclusions: Our data provide a first estimation of the DNA damage induced by Ra-224 in peripheral blood mononuclear cells. A comparison with our previously published Ra-223 data suggests that there is no difference in the induction of radiation-induced DNA damage between the two radium isotopes due to their similar decay properties.}, language = {en} } @article{AertsEberleinHolmetal.2021, author = {Aerts, An and Eberlein, Uta and Holm, S{\"o}ren and Hustinx, Roland and Konijnenberg, Mark and Strigari, Lidia and van Leeuwen, Fijs W. B. and Glatting, Gerhard and Lassmann, Michael}, title = {EANM position paper on the role of radiobiology in nuclear medicine}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, volume = {48}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, number = {11}, doi = {10.1007/s00259-021-05345-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265595}, pages = {3365-3377}, year = {2021}, abstract = {With an increasing variety of radiopharmaceuticals for diagnostic or therapeutic nuclear medicine as valuable diagnostic or treatment option, radiobiology plays an important role in supporting optimizations. This comprises particularly safety and efficacy of radionuclide therapies, specifically tailored to each patient. As absorbed dose rates and absorbed dose distributions in space and time are very different between external irradiation and systemic radionuclide exposure, distinct radiation-induced biological responses are expected in nuclear medicine, which need to be explored. This calls for a dedicated nuclear medicine radiobiology. Radiobiology findings and absorbed dose measurements will enable an improved estimation and prediction of efficacy and adverse effects. Moreover, a better understanding on the fundamental biological mechanisms underlying tumor and normal tissue responses will help to identify predictive and prognostic biomarkers as well as biomarkers for treatment follow-up. In addition, radiobiology can form the basis for the development of radiosensitizing strategies and radioprotectant agents. Thus, EANM believes that, beyond in vitro and preclinical evaluations, radiobiology will bring important added value to clinical studies and to clinical teams. Therefore, EANM strongly supports active collaboration between radiochemists, radiopharmacists, radiobiologists, medical physicists, and physicians to foster research toward precision nuclear medicine.}, language = {en} } @article{GoeringSchumannMuelleretal.2022, author = {G{\"o}ring, Lukas and Schumann, Sarah and M{\"u}ller, Jessica and Buck, Andreas K. and Port, Matthias and Lassmann, Michael and Scherthan, Harry and Eberlein, Uta}, title = {Repair of a-particle-induced DNA damage in peripheral blood mononuclear cells after internal ex vivo irradiation with \(^{223}\)Ra}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, volume = {49}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, number = {12}, doi = {10.1007/s00259-022-05860-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324557}, pages = {3981-3988}, year = {2022}, abstract = {Purpose As α-emitters for radiopharmaceutical therapies are administered systemically by intravenous injection, blood will be irradiated by α-particles that induce clustered DNA double-strand breaks (DSBs). Here, we investigated the induction and repair of DSB damage in peripheral blood mononuclear cells (PBMCs) as a function of the absorbed dose to the blood following internal ex vivo irradiation with [\(^{223}\)Ra]RaCl2. Methods Blood samples of ten volunteers were irradiated by adding [\(^{223}\)Ra]RaCl2 solution with different activity concentrations resulting in absorbed doses to the blood of 3 mGy, 25 mGy, 50 mGy and 100 mGy. PBMCs were isolated, divided in three parts and either fixed directly (d-samples) or after 4 h or 24 h culture. After immunostaining, the induced γ-H2AX α-tracks were counted. The time-dependent decrease in α-track frequency was described with a model assuming a repair rate R and a fraction of non-repairable damage Q. Results For 25 mGy, 50 mGy and 100 mGy, the numbers of α-tracks were significantly increased compared to baseline at all time points. Compared to the corresponding d-samples, the α-track frequency decreased significantly after 4 h and after 24 h. The repair rates R were (0.24 ± 0.05) h-1 for 25 mGy, (0.16 ± 0.04) h-1 for 50 mGy and (0.13 ± 0.02) h-1 for 100 mGy, suggesting faster repair at lower absorbed doses, while Q-values were similar. Conclusion The results obtained suggest that induction and repair of the DSB damage depend on the absorbed dose to the blood. Repair rates were similar to what has been observed for irradiation with low linear energy transfer.}, language = {en} }