@article{UteReisbergHildebrandtetal.2013, author = {Ute, Hentschel and Reisberg, Eva E. and Hildebrandt, Ulrich and Riederer, Markus}, title = {Distinct Phyllosphere Bacterial Communities on Arabidopsis Wax Mutant Leaves}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0078613}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96699}, year = {2013}, abstract = {The phyllosphere of plants is inhabited by diverse microorganisms, however, the factors shaping their community composition are not fully elucidated. The plant cuticle represents the initial contact surface between microorganisms and the plant. We thus aimed to investigate whether mutations in the cuticular wax biosynthesis would affect the diversity of the phyllosphere microbiota. A set of four Arabidopsis thaliana eceriferum mutants (cer1, cer6, cer9, cer16) and their respective wild type (Landsberg erecta) were subjected to an outdoor growth period and analysed towards this purpose. The chemical distinctness of the mutant wax phenotypes was confirmed by gas chromatographic measurements. Next generation amplicon pyrosequencing of the bacterial communities showed distinct community patterns. This observation was supported by denaturing gradient gel electrophoresis experiments. Microbial community analyses revealed bacterial phylotypes that were ubiquitously present on all plant lines (termed "core" community) while others were positively or negatively affected by the wax mutant phenotype (termed "plant line-specific" community). We conclude from this study that plant cuticular wax composition can affect the community composition of phyllosphere bacteria.}, language = {en} } @article{PimentelElardoKozytskaBugnietal.2010, author = {Pimentel-Elardo, Sheila Marie and Kozytska, Svitlana and Bugni, Tim S. and Ireland, Chris M. and Moll, Heidrun and Hentschel, Ute}, title = {Anti-Parasitic Compounds from Streptomyces sp. Strains Isolated from Mediterranean Sponges}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68312}, year = {2010}, abstract = {Actinomycetes are prolific producers of pharmacologically important compounds accounting for about 70\% of the naturally derived antibiotics that are currently in clinical use. In this study, we report on the isolation of Streptomyces sp. strains from Mediterranean sponges, on their secondary metabolite production and on their screening for anti-infective activities. Bioassay-guided isolation and purification yielded three previously known compounds namely, cyclic depsipeptide valinomycin, indolocarbazole alkaloid staurosporine and butenolide. This is the first report of the isolation of valinomycin from a marine source. These compounds exhibited novel anti-parasitic activities specifically against Leishmania major (valinomycin IC50 < 0.11 μM; staurosporine IC50 5.30 μM) and Trypanosoma brucei brucei (valinomycin IC50 0.0032 μM; staurosporine IC50 0.022 μM; butenolide IC50 31.77 μM). These results underscore the potential of marine actinomycetes to produce bioactive compounds as well as the re-evaluation of previously known compounds for novel anti-infective activities.}, subject = {Biologie}, language = {en} } @article{PimentelElardoGrozdanovProkschetal.2012, author = {Pimentel-Elardo, Sheila Marie and Grozdanov, Lubomir and Proksch, Sebastian and Hentschel, Ute}, title = {Diversity of Nonribosomal Peptide Synthetase Genes in the Microbial Metagenomes of Marine Sponges}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75990}, year = {2012}, abstract = {Genomic mining revealed one major nonribosomal peptide synthetase (NRPS) phylogenetic cluster in 12 marine sponge species, one ascidian, an actinobacterial isolate and seawater. Phylogenetic analysis predicts its taxonomic affiliation to the actinomycetes and hydroxy-phenyl-glycine as a likely substrate. Additionally, a phylogenetically distinct NRPS gene cluster was discovered in the microbial metagenome of the sponge Aplysina aerophoba, which shows highest similarities to NRPS genes that were previously assigned, by ways of single cell genomics, to a Chloroflexi sponge symbiont. Genomic mining studies such as the one presented here for NRPS genes, contribute to on-going efforts to characterize the genomic potential of sponge-associated microbiota for secondary metabolite biosynthesis.}, subject = {Biologie}, language = {en} } @article{PimentelElardoBubackGulderetal.2011, author = {Pimentel-Elardo, Sheila M. and Buback, Verena and Gulder, Tobias A. M. and Bugni, Tim S. and Reppart, Jason and Bringmann, Gerhard and Ireland, Chris M. and Schirmeister, Tanja and Hentschel, Ute}, title = {New Tetromycin Derivatives with Anti-Trypanosomal and Protease Inhibitory Activities}, series = {Marine drugs}, volume = {9}, journal = {Marine drugs}, number = {10}, doi = {10.3390/md9101682}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141171}, pages = {1682-1697}, year = {2011}, abstract = {Four new tetromycin derivatives, tetromycins 1-4 and a previously known one, tetromycin B (5) were isolated from Streptomyces axinellae Pol001(T) cultivated from the Mediterranean sponge Axinella polypoides. Structures were assigned using extensive 1D and 2D NMR spectroscopy as well as HRESIMS analysis. The compounds were tested for antiparasitic activities against Leishmania major and Trypanosoma brucei, and for protease inhibition against several cysteine proteases such as falcipain, rhodesain, cathepsin L, cathepsin B, and viral proteases SARS-CoV M(pro), and PL(pro). The compounds showed antiparasitic activities against T. brucei and time-dependent inhibition of cathepsin L-like proteases with K(i) values in the low micromolar range.}, language = {en} } @article{PimentelElardoBubackGulderetal.2011, author = {Pimentel-Elardo, Sheila M. and Buback, Verena and Gulder, Tobias A. M. and Bugni, Tim S. and Reppart, Jason and Bringmann, Gerhard and Ireland, Chris M. and Schirmeister, Tanja and Hentschel, Ute}, title = {New Tetromycin Derivatives with Anti-Trypanosomal and Protease Inhibitory Activities}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75465}, year = {2011}, abstract = {Four new tetromycin derivatives, tetromycins 1-4 and a previously known one, tetromycin B (5) were isolated from Streptomyces axinellae Pol001T cultivated from the Mediterranean sponge Axinella polypoides. Structures were assigned using extensive 1D and 2D NMR spectroscopy as well as HRESIMS analysis. The compounds were tested for antiparasitic activities against Leishmania major and Trypanosoma brucei, and for protease inhibition against several cysteine proteases such as falcipain, rhodesain, cathepsin L, cathepsin B, and viral proteases SARS-CoV Mpro, and PLpro. The compounds showed antiparasitic activities against T. brucei and time-dependent inhibition of cathepsin L-like proteases with Ki values in the low micromolar range.}, subject = {Biologie}, language = {en} } @article{OliAbdelmohsenHentscheletal.2014, author = {Oli, Swarna and Abdelmohsen, Usama Ramadan and Hentschel, Ute and Schirmeister, Tanja}, title = {Identification of Plakortide E from the Caribbean Sponge Plakortis halichondroides as a Trypanocidal Protease Inhibitor using Bioactivity-Guided Fractionation}, series = {MARINE DRUGS}, volume = {12}, journal = {MARINE DRUGS}, number = {5}, issn = {1660-3397}, doi = {10.3390/md12052614}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116536}, pages = {2614-2622}, year = {2014}, abstract = {In this paper, we report new protease inhibitory activity of plakortide E towards cathepsins and cathepsin-like parasitic proteases. We further report on its anti-parasitic activity against Trypanosoma brucei with an IC50 value of 5 mu M and without cytotoxic effects against J774.1 macrophages at 100 mu M concentration. Plakortide E was isolated from the sponge Plakortis halichondroides using enzyme assay-guided fractionation and identified by NMR spectroscopy and mass spectrometry. Furthermore, enzyme kinetic studies confirmed plakortide E as a non-competitive, slowly-binding, reversible inhibitor of rhodesain.}, language = {en} } @article{MacintyreZhangViegelmannetal.2014, author = {Macintyre, Lynsey and Zhang, Tong and Viegelmann, Christina and Martinez, Ignacio Juarez and Cheng, Cheng and Dowdells, Catherine and Abdelmohsen, Usama Ramadan and Gernert, Christine and Hentschel, Ute and Edrada-Ebel, RuAngelie}, title = {Metabolomic Tools for Secondary Metabolite Discovery from Marine Microbial Symbionts}, series = {Marine Drugs}, volume = {12}, journal = {Marine Drugs}, number = {6}, issn = {1660-3397}, doi = {10.3390/md12063416}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116097}, pages = {3416-3448}, year = {2014}, abstract = {Marine invertebrate-associated symbiotic bacteria produce a plethora of novel secondary metabolites which may be structurally unique with interesting pharmacological properties. Selection of strains usually relies on literature searching, genetic screening and bioactivity results, often without considering the chemical novelty and abundance of secondary metabolites being produced by the microorganism until the time-consuming bioassay-guided isolation stages. To fast track the selection process, metabolomic tools were used to aid strain selection by investigating differences in the chemical profiles of 77 bacterial extracts isolated from cold water marine invertebrates from Orkney, Scotland using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Following mass spectrometric analysis and dereplication using an Excel macro developed in-house, principal component analysis (PCA) was employed to differentiate the bacterial strains based on their chemical profiles. NMR H-1 and correlation spectroscopy (COSY) were also employed to obtain a chemical fingerprint of each bacterial strain and to confirm the presence of functional groups and spin systems. These results were then combined with taxonomic identification and bioassay screening data to identify three bacterial strains, namely Bacillus sp. 4117, Rhodococcus sp. ZS402 and Vibrio splendidus strain LGP32, to prioritize for scale-up based on their chemically interesting secondary metabolomes, established through dereplication and interesting bioactivities, determined from bioassay screening.}, language = {en} } @article{JahnMarkertRyuetal.2016, author = {Jahn, Martin T. and Markert, Sebastian M. and Ryu, Taewoo and Ravasi, Timothy and Stigloher, Christian and Hentschel, Ute and Moitinho-Silva, Lucas}, title = {Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {35860}, doi = {10.1038/srep35860}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167513}, year = {2016}, abstract = {Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.}, language = {en} } @article{HornKellerHildebrandtetal.2016, author = {Horn, Hannes and Keller, Alexander and Hildebrandt, Ulrich and K{\"a}mpfer, Peter and Riederer, Markus and Hentschel, Ute}, title = {Draft genome of the \(Arabidopsis\) \(thaliana\) phyllosphere bacterium, \(Williamsia\) sp. ARP1}, series = {Standards in Genomic Sciences}, volume = {11}, journal = {Standards in Genomic Sciences}, number = {8}, doi = {10.1186/s40793-015-0122-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146008}, year = {2016}, abstract = {The Gram-positive actinomycete \(Williamsia\) sp. ARP1 was originally isolated from the \(Arabidopsis\) \(thaliana\) phyllosphere. Here we describe the general physiological features of this microorganism together with the draft genome sequence and annotation. The 4,745,080 bp long genome contains 4434 protein-coding genes and 70 RNA genes. To our knowledge, this is only the second reported genome from the genus \(Williamsia\) and the first sequenced strain from the phyllosphere. The presented genomic information is interpreted in the context of an adaptation to the phyllosphere habitat.}, language = {en} } @article{HornHentschelRamadanAbdelmohsen2015, author = {Horn, Hannes and Hentschel, Ute and Ramadan Abdelmohsen, Usama}, title = {Mining Genomes of Three Marine Sponge-Associated Actinobacterial Isolates for Secondary Metabolism}, series = {Genome Announcements}, volume = {3}, journal = {Genome Announcements}, number = {5}, doi = {10.1128/genomeA.01106-15}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124887}, pages = {e01106-15}, year = {2015}, abstract = {Here, we report the draft genome sequences of three actinobacterial isolates, Micromonospora sp. RV43, Rubrobacter sp. RV113, and Nocardiopsis sp. RV163 that had previously been isolated from Mediterranean sponges. The draft genomes were analyzed for the presence of gene clusters indicative of secondary metabolism using antiSMASH 3.0 and NapDos pipelines. Our findings demonstrated the chemical richness of sponge-associated actinomycetes and the efficacy of genome mining in exploring the genomic potential of sponge-derived actinomycetes.}, language = {en} }