@article{BurgsdorfSlabyHandleyetal.2015, author = {Burgsdorf, Ilia and Slaby, Beate M. and Handley, Kim M. and Haber, Markus and Blom, Jochen and Marshall, Christopher W. and Gilbert, Jack A. and Hentschel, Ute and Steindler, Laura}, title = {Lifestyle Evolution in Cyanobacterial Symbionts of Sponges}, series = {mBio}, volume = {6}, journal = {mBio}, number = {3}, doi = {10.1128/mBio.00391-15}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143117}, pages = {e00391-15}, year = {2015}, abstract = {The "Candidatus Synechococcus spongiarum" group includes different clades of cyanobacteria with high 16S rRNA sequence identity (~99\%) and is the most abundant and widespread cyanobacterial symbiont of marine sponges. The first draft genome of a "Ca. Synechococcus spongiarum" group member was recently published, providing evidence of genome reduction by loss of genes involved in several nonessential functions. However, "Ca. Synechococcus spongiarum" includes a variety of clades that may differ widely in genomic repertoire and consequently in physiology and symbiotic function. Here, we present three additional draft genomes of "Ca. Synechococcus spongiarum," each from a different clade. By comparing all four symbiont genomes to those of free-living cyanobacteria, we revealed general adaptations to life inside sponges and specific adaptations of each phylotype. Symbiont genomes shared about half of their total number of coding genes. Common traits of "Ca. Synechococcus spongiarum" members were a high abundance of DNA modification and recombination genes and a reduction in genes involved in inorganic ion transport and metabolism, cell wall biogenesis, and signal transduction mechanisms. Moreover, these symbionts were characterized by a reduced number of antioxidant enzymes and low-weight peptides of photosystem II compared to their free-living relatives. Variability within the "Ca. Synechococcus spongiarum" group was mostly related to immune system features, potential for siderophore-mediated iron transport, and dependency on methionine from external sources. The common absence of genes involved in synthesis of residues, typical of the O antigen of free-living Synechococcus species, suggests a novel mechanism utilized by these symbionts to avoid sponge predation and phage attack. IMPORTANCE While the Synechococcus/Prochlorococcus-type cyanobacteria are widely distributed in the world's oceans, a subgroup has established its niche within marine sponge tissues. Recently, the first genome of sponge-associated cyanobacteria, " Candidatus Synechococcus spongiarum," was described. The sequencing of three representatives of different clades within this cyanobacterial group has enabled us to investigate intraspecies diversity, as well as to give a more comprehensive understanding of the common symbiotic features that adapt "Ca. Synechococcus spongiarum" to its life within the sponge host.}, language = {en} } @article{ChengMacIntyreRamadanAbdelmohsenetal.2015, author = {Cheng, Cheng and MacIntyre, Lynsey and Ramadan Abdelmohsen, Usama and Horn, Hannes and Polymenakou, Paraskevi N. and Edrada-Ebel, RuAngelie and Hentschel, Ute}, title = {Biodiversity, Anti-Trypanosomal Activity Screening, and Metabolomic Profiling of Actinomycetes Isolated from Mediterranean Sponges}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {9}, doi = {10.1371/journal.pone.0138528}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125138}, pages = {e0138528}, year = {2015}, abstract = {Marine sponge-associated actinomycetes are considered as promising sources for the discovery of novel biologically active compounds. In the present study, a total of 64 actinomycetes were isolated from 12 different marine sponge species that had been collected offshore the islands of Milos and Crete, Greece, eastern Mediterranean. The isolates were affiliated to 23 genera representing 8 different suborders based on nearly full length 16S rRNA gene sequencing. Four putatively novel species belonging to genera Geodermatophilus, Microlunatus, Rhodococcus and Actinomycetospora were identified based on a 16S rRNA gene sequence similarity of < 98.5\% to currently described strains. Eight actinomycete isolates showed bioactivities against Trypanosma brucei brucei TC221 with half maximal inhibitory concentration (IC50) values <20 μg/mL. Thirty four isolates from the Milos collection and 12 isolates from the Crete collection were subjected to metabolomic analysis using high resolution LC-MS and NMR for dereplication purposes. Two isolates belonging to the genera Streptomyces (SBT348) and Micromonospora (SBT687) were prioritized based on their distinct chemistry profiles as well as their anti-trypanosomal activities. These findings demonstrated the feasibility and efficacy of utilizing metabolomics tools to prioritize chemically unique strains from microorganism collections and further highlight sponges as rich source for novel and bioactive actinomycetes.}, language = {en} } @article{HornHentschelRamadanAbdelmohsen2015, author = {Horn, Hannes and Hentschel, Ute and Ramadan Abdelmohsen, Usama}, title = {Mining Genomes of Three Marine Sponge-Associated Actinobacterial Isolates for Secondary Metabolism}, series = {Genome Announcements}, volume = {3}, journal = {Genome Announcements}, number = {5}, doi = {10.1128/genomeA.01106-15}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124887}, pages = {e01106-15}, year = {2015}, abstract = {Here, we report the draft genome sequences of three actinobacterial isolates, Micromonospora sp. RV43, Rubrobacter sp. RV113, and Nocardiopsis sp. RV163 that had previously been isolated from Mediterranean sponges. The draft genomes were analyzed for the presence of gene clusters indicative of secondary metabolism using antiSMASH 3.0 and NapDos pipelines. Our findings demonstrated the chemical richness of sponge-associated actinomycetes and the efficacy of genome mining in exploring the genomic potential of sponge-derived actinomycetes.}, language = {en} }