@article{BiernackaSangkuhlJenkinsetal.2015, author = {Biernacka, J. M. and Sangkuhl, K. and Jenkins, G. and Whaley, R. M. and Barman, P. and Batzler, A. and Altman, R. B. and Arolt, V. and Brockm{\"o}ller, J. and Chen, C. H. and Domschke, K. and Hall-Flavin, D. K. and Hong, C. J. and Illi, A. and Ji, Y. and Kampman, O. and Kinoshita, T. and Leinonen, E. and Liou, Y. J. and Mushiroda, T. and Nonen, S. and Skime, M. K. and Wang, L. and Baune, B. T. and Kato, M. and Liu, Y. L. and Praphanphoj, V. and Stingl, J. C. and Tsai, S. J. and Kubo, M. and Klein, T. E. and Weinshilboum, R.}, title = {The International SSRI Pharmacogenomics Consortium (ISPC): a genome-wide association study of antidepressant treatment response}, series = {Translational Psychiatry}, volume = {5}, journal = {Translational Psychiatry}, number = {e553}, doi = {10.1038/tp.2015.47}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143223}, year = {2015}, abstract = {Response to treatment with selective serotonin reuptake inhibitors (SSRIs) varies considerably between patients. The International SSRI Pharmacogenomics Consortium (ISPC) was formed with the primary goal of identifying genetic variation that may contribute to response to SSRI treatment of major depressive disorder. A genome-wide association study of 4-week treatment outcomes, measured using the 17-item Hamilton Rating Scale for Depression (HRSD-17), was performed using data from 865 subjects from seven sites. The primary outcomes were percent change in HRSD-17 score and response, defined as at least 50\% reduction in HRSD-17. Data from two prior studies, the Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomics Study (PGRN-AMPS) and the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study, were used for replication, and a meta-analysis of the three studies was performed (N = 2394). Although many top association signals in the ISPC analysis map to interesting candidate genes, none were significant at the genome-wide level and the associations were not replicated using PGRN-AMPS and STAR*D data. Top association results in the meta-analysis of response included single-nucleotide polymorphisms (SNPs) in the HPRTP4 (hypoxanthine phosphoribosyltransferase pseudogene 4)/VSTM5 (V-set and transmembrane domain containing 5) region, which approached genome-wide significance (P = 5.03E - 08) and SNPs 5' upstream of the neuregulin-1 gene, NRG1 (P = 1.20E - 06). NRG1 is involved in many aspects of brain development, including neuronal maturation and variations in this gene have been shown to be associated with increased risk for mental disorders, particularly schizophrenia. Replication and functional studies of these findings are warranted.}, language = {en} } @article{HommersRichterYangetal.2018, author = {Hommers, L. G. and Richter, J. and Yang, Y. and Raab, A. and Baumann, C. and Lang, K. and Schiele, M. A. and Weber, H. and Wittmann, A. and Wolf, C. and Alpers, G. W. and Arolt, V. and Domschke, K. and Fehm, L. and Fydrich, T. and Gerlach, A. and Gloster, A. T. and Hamm, A. O. and Helbig-Lang, S. and Kircher, T. and Lang, T. and Pan{\´e}-Farr{\´e}, C. A. and Pauli, P. and Pfleiderer, B. and Reif, A. and Romanos, M. and Straube, B. and Str{\"o}hle, A. and Wittchen, H.-U. and Frantz, S. and Ertl, G. and Lohse, M. J. and Lueken, U. and Deckert, J.}, title = {A functional genetic variation of SLC6A2 repressor hsa-miR-579-3p upregulates sympathetic noradrenergic processes of fear and anxiety}, series = {Translational Psychiatry}, volume = {8}, journal = {Translational Psychiatry}, doi = {10.1038/s41398-018-0278-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322497}, year = {2018}, abstract = {Increased sympathetic noradrenergic signaling is crucially involved in fear and anxiety as defensive states. MicroRNAs regulate dynamic gene expression during synaptic plasticity and genetic variation of microRNAs modulating noradrenaline transporter gene (SLC6A2) expression may thus lead to altered central and peripheral processing of fear and anxiety. In silico prediction of microRNA regulation of SLC6A2 was confirmed by luciferase reporter assays and identified hsa-miR-579-3p as a regulating microRNA. The minor (T)-allele of rs2910931 (MAFcases = 0.431, MAFcontrols = 0.368) upstream of MIR579 was associated with panic disorder in patients (pallelic = 0.004, ncases = 506, ncontrols = 506) and with higher trait anxiety in healthy individuals (pASI = 0.029, pACQ = 0.047, n = 3112). Compared to the major (A)-allele, increased promoter activity was observed in luciferase reporter assays in vitro suggesting more effective MIR579 expression and SLC6A2 repression in vivo (p = 0.041). Healthy individuals carrying at least one (T)-allele showed a brain activation pattern suggesting increased defensive responding and sympathetic noradrenergic activation in midbrain and limbic areas during the extinction of conditioned fear. Panic disorder patients carrying two (T)-alleles showed elevated heart rates in an anxiety-provoking behavioral avoidance test (F(2, 270) = 5.47, p = 0.005). Fine-tuning of noradrenaline homeostasis by a MIR579 genetic variation modulated central and peripheral sympathetic noradrenergic activation during fear processing and anxiety. This study opens new perspectives on the role of microRNAs in the etiopathogenesis of anxiety disorders, particularly their cardiovascular symptoms and comorbidities.}, language = {en} } @article{StraubeReifRichteretal.2014, author = {Straube, B. and Reif, A. and Richter, J. and Lueken, U. and Weber, H. and Arolt, V. and Jansen, A. and Zwanzger, P. and Domschke, K. and Pauli, P. and Konrad, C. and Gerlach, A. L. and Lang, T. and Fydrich, T. and Alpers, G. W. and Stroehle, A. and Wittmann, A. and Pfleiderer, B. and Wittchen, H.-U. and Hamm, A. and Deckert, J. and Kircher, T.}, title = {The functional - 1019C/G HTR1A polymorphism and mechanisms of fear}, series = {Translational Psychiatry}, volume = {4}, journal = {Translational Psychiatry}, issn = {2158-3188}, doi = {10.1038/tp.2014.130}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114369}, pages = {e490}, year = {2014}, abstract = {Serotonin receptor 1A gene (HTR1A) knockout mice show pronounced defensive behaviour and increased fear conditioning to ambiguous conditioned stimuli. Such behaviour is a hallmark of pathological human anxiety, as observed in panic disorder with agoraphobia (PD/AG). Thus, variations in HTR1A might contribute to neurophysiological differences within subgroups of PD/AG patients. Here, we tested this hypothesis by combining genetic with behavioural techniques and neuroimaging. In a clinical multicentre trial, patients with PD/AG received 12 sessions of manualized cognitive-behavioural therapy (CBT) and were genotyped for HTR1A rs6295. In four subsamples of this multicentre trial, exposure behaviour (n = 185), defensive reactivity measured using a behavioural avoidance test (BAT; before CBT: n = 245; after CBT: n = 171) and functional magnetic resonance imaging (fMRI) data during fear conditioning were acquired before and after CBT (n = 39). HTR1A risk genotype (GG) carriers more often escaped during the BAT before treatment. Exploratory fMRI results suggest increased activation of the amygdala in response to threat as well as safety cues before and after treatment in GG carriers. Furthermore, GG carriers demonstrated reduced effects of CBT on differential conditioning in regions including the bilateral insulae and the anterior cingulate cortex. Finally, risk genotype carriers demonstrated reduced self-initiated exposure behaviour to aversive situations. This study demonstrates the effect of HTR1A variation on defensive behaviour, amygdala activity, CBT-induced neural plasticity and normalization of defence behaviour in PD/AG. Our results, therefore, translate evidence from animal studies to humans and suggest a central role for HTR1A in differentiating subgroups of patients with anxiety disorders.}, language = {en} } @article{ZieglerRichterMahretal.2016, author = {Ziegler, C. and Richter, J. and Mahr, M. and Gajewska, A. and Schiele, M.A. and Gehrmann, A. and Schmidt, B. and Lesch, K.-P. and Lang, T. and Helbig-Lang, S. and Pauli, P. and Kircher, T. and Reif, A. and Rief, W. and Vossbeck-Elsebusch, A.N. and Arolt, V. and Wittchen, H.-U. and Hamm, A.O. and Deckert, J. and Domschke, K.}, title = {MAOA gene hypomethylation in panic disorder-reversibility of an epigenetic risk pattern by psychotherapy}, series = {Translational Psychiatry}, journal = {Translational Psychiatry}, number = {6}, doi = {10.1038/tp.2016.41}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164422}, pages = {e773}, year = {2016}, abstract = {Epigenetic signatures such as methylation of the monoamine oxidase A (MAOA) gene have been found to be altered in panic disorder (PD). Hypothesizing temporal plasticity of epigenetic processes as a mechanism of successful fear extinction, the present psychotherapy-epigenetic study for we believe the first time investigated MAOA methylation changes during the course of exposure-based cognitive behavioral therapy (CBT) in PD. MAOA methylation was compared between N=28 female Caucasian PD patients (discovery sample) and N=28 age- and sex-matched healthy controls via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells. MAOA methylation was furthermore analyzed at baseline (T0) and after a 6-week CBT (T1) in the discovery sample parallelized by a waiting time in healthy controls, as well as in an independent sample of female PD patients (N=20). Patients exhibited lower MAOA methylation than healthy controls (P<0.001), and baseline PD severity correlated negatively with MAOA methylation (P=0.01). In the discovery sample, MAOA methylation increased up to the level of healthy controls along with CBT response (number of panic attacks; T0-T1: +3.37±2.17\%), while non-responders further decreased in methylation (-2.00±1.28\%; P=0.001). In the replication sample, increases in MAOA methylation correlated with agoraphobic symptom reduction after CBT (P=0.02-0.03). The present results support previous evidence for MAOA hypomethylation as a PD risk marker and suggest reversibility of MAOA hypomethylation as a potential epigenetic correlate of response to CBT. The emerging notion of epigenetic signatures as a mechanism of action of psychotherapeutic interventions may promote epigenetic patterns as biomarkers of lasting extinction effects.}, language = {en} }