@article{TrebingElMeserySchaeferetal.2014, author = {Trebing, J. and El-Mesery, M. and Sch{\"a}fer, V. and Weisenberger, D. and Siegmund, D. and Silence, K. and Wajant, H.}, title = {CD70-restricted specific activation of TRAILR1 or TRAILR2 using scFv-targeted TRAIL mutants}, series = {Cell Death \& Disease}, volume = {5}, journal = {Cell Death \& Disease}, doi = {10.1038/cddis.2013.555}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120078}, pages = {e1035}, year = {2014}, abstract = {To combine the CD27 stimulation inhibitory effect of blocking CD70 antibodies with an antibody-dependent cellular cytotoxicity (ADCC)-independent, cell death-inducing activity for targeting of CD70-expressing tumors, we evaluated here fusion proteins of the apoptosis-inducing TNF family member TRAIL and a single-chain variable fragment (scFv) derived from a high-affinity llama-derived anti-human CD70 antibody (lαhCD70). A fusion protein of scFv:lαhCD70 with TNC-TRAIL, a stabilized form of TRAIL, showed strongly enhanced apoptosis induction upon CD70 binding and furthermore efficiently interfered with CD70-CD27 interaction. Noteworthy, introduction of recently identified mutations that discriminate between TRAILR1 and TRAILR2 binding into the TRAIL part of scFv:lαhCD70-TNC-TRAIL resulted in TRAIL death receptor-specific fusion proteins with CD70-restricted activity.}, language = {en} } @article{AntoniouKuchenbaeckerSoucyetal.2012, author = {Antoniou, Antonis C. and Kuchenbaecker, Karoline B. and Soucy, Penny and Beesley, Jonathan and Chen, Xiaoqing and McGuffog, Lesley and Lee, Andrew and Barrowdale, Daniel and Healey, Sue and Sinilnikova, Olga M. and Caligo, Maria A. and Loman, Niklas and Harbst, Katja and Lindblom, Annika and Arver, Brita and Rosenquist, Richard and Karlsson, Per and Nathanson, Kate and Domchek, Susan and Rebbeck, Tim and Jakubowska, Anna and Lubinski, Jan and Jaworska, Katarzyna and Durda, Katarzyna and Zlowowcka-Perłowska, Elżbieta and Osorio, Ana and Dur{\´a}n, Mercedes and Andr{\´e}s, Raquel and Ben{\´i}tez, Javier and Hamann, Ute and Hogervorst, Frans B. and van Os, Theo A. and Verhoef, Senno and Meijers-Heijboer, Hanne E. J. and Wijnen, Juul and Garcia, Encarna B. G{\´o}mez and Ligtenberg, Marjolijn J. and Kriege, Mieke and Coll{\´e}e, Margriet and Ausems, Margreet G. E. M. and Oosterwijk, Jan C. and Peock, Susan and Frost, Debra and Ellis, Steve D. and Platte, Radka and Fineberg, Elena and Evans, D. Gareth and Lalloo, Fiona and Jacobs, Chris and Eeles, Ros and Adlard, Julian and Davidson, Rosemarie and Cole, Trevor and Cook, Jackie and Paterson, Joan and Douglas, Fiona and Brewer, Carole and Hodgson, Shirley and Morrison, Patrick J. and Walker, Lisa and Rogers, Mark T. and Donaldson, Alan and Dorkins, Huw and Godwin, Andrew K. and Bove, Betsy and Stoppa-Lyonnet, Dominique and Houdayer, Claude and Buecher, Bruno and de Pauw, Antoine and Mazoyer, Sylvie and Calender, Alain and L{\´e}on{\´e}, M{\´e}lanie and Bressac-de Paillerets, Brigitte and Caron, Olivier and Sobol, Hagay and Frenay, Marc and Prieur, Fabienne and Ferrer, Sandra Fert and Mortemousque, Isabelle and Buys, Saundra and Daly, Mary and Miron, Alexander and Terry, Mary Beth and Hopper, John L. and John, Esther M. and Southey, Melissa and Goldgar, David and Singer, Christian F. and Fink-Retter, Anneliese and Muy-Kheng, Tea and Geschwantler Kaulich, Daphne and Hansen, Thomas V. O. and Nielsen, Finn C. and Barkardottir, Rosa B. and Gaudet, Mia and Kirchhoff, Tomas and Joseph, Vijai and Dutra-Clarke, Ana and Offit, Kenneth and Piedmonte, Marion and Kirk, Judy and Cohn, David and Hurteau, Jean and Byron, John and Fiorica, James and Toland, Amanda E. and Montagna, Marco and Oliani, Cristina and Imyanitov, Evgeny and Isaacs, Claudine and Tihomirova, Laima and Blanco, Ignacio and Lazaro, Conxi and Teul{\´e}, Alex and Del Valle, J. and Gayther, Simon A. and Odunsi, Kunle and Gross, Jenny and Karlan, Beth Y. and Olah, Edith and Teo, Soo-Hwang and Ganz, Patricia A. and Beattie, Mary S. and Dorfling, Cecelia M. and Jansen van Rensburg, Elizabeth and Diez, Orland and Kwong, Ava and Schmutzler, Rita K. and Wappenschmidt, Barbara and Engel, Christoph and Meindl, Alfons and Ditsch, Nina and Arnold, Norbert and Heidemann, Simone and Niederacher, Dieter and Preisler-Adams, Sabine and Gadzicki, Dorothea and Varon-Mateeva, Raymonda and Deissler, Helmut and Gehrig, Andrea and Sutter, Christian and Kast, Karin and Fiebig, Britta and Sch{\"a}fer, Dieter and Caldes, Trinidad and de la Hoya, Miguel and Nevanlinna, Heli and Muranen, Taru A. and Lesp{\´e}rance, Bernard and Spurdle, Amanda B. and Neuhausen, Susan L. and Ding, Yuan C. and Wang, Xianshu and Fredericksen, Zachary and Pankratz, Vernon S. and Lindor, Noralane M. and Peterlongo, Paulo and Manoukian, Siranoush and Peissel, Bernard and Zaffaroni, Daniela and Bonanni, Bernardo and Bernard, Loris and Dolcetti, Riccardo and Papi, Laura and Ottini, Laura and Radice, Paolo and Greene, Mark H. and Loud, Jennifer T. and Andrulis, Irene L. and Ozcelik, Hilmi and Mulligan, Anna Marie and Glendon, Gord and Thomassen, Mads and Gerdes, Anne-Marie and Jensen, Uffe B. and Skytte, Anne-Bine and Kruse, Torben A. and Chenevix-Trench, Georgia and Couch, Fergus J. and Simard, Jacques and Easton, Douglas F.}, title = {Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers}, series = {Breast Cancer Research}, volume = {14}, journal = {Breast Cancer Research}, number = {R33}, organization = {CIMBA; SWE-BRCA; HEBON; EMBRACE; GEMO Study Collaborators; kConFab Investigators}, doi = {10.1186/bcr3121}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130449}, year = {2012}, abstract = {Introduction: Several common alleles have been shown to be associated with breast and/or ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Recent genome-wide association studies of breast cancer have identified eight additional breast cancer susceptibility loci: rs1011970 (9p21, CDKN2A/B), rs10995190 (ZNF365), rs704010 (ZMIZ1), rs2380205 (10p15), rs614367 (11q13), rs1292011 (12q24), rs10771399 (12p11 near PTHLH) and rs865686 (9q31.2). Methods: To evaluate whether these single nucleotide polymorphisms (SNPs) are associated with breast cancer risk for BRCA1 and BRCA2 carriers, we genotyped these SNPs in 12,599 BRCA1 and 7,132 BRCA2 mutation carriers and analysed the associations with breast cancer risk within a retrospective likelihood framework. Results: Only SNP rs10771399 near PTHLH was associated with breast cancer risk for BRCA1 mutation carriers (per-allele hazard ratio (HR) = 0.87, 95\% CI: 0.81 to 0.94, P-trend = 3 x 10\(^{-4}\)). The association was restricted to mutations proven or predicted to lead to absence of protein expression (HR = 0.82, 95\% CI: 0.74 to 0.90, P-trend = 3.1 x 10\(^{-5}\), P-difference = 0.03). Four SNPs were associated with the risk of breast cancer for BRCA2 mutation carriers: rs10995190, P-trend = 0.015; rs1011970, P-trend = 0.048; rs865686, 2df P = 0.007; rs1292011 2df P = 0.03. rs10771399 (PTHLH) was predominantly associated with estrogen receptor (ER)-negative breast cancer for BRCA1 mutation carriers (HR = 0.81, 95\% CI: 0.74 to 0.90, P-trend = 4 x 10\(^{-5}\)) and there was marginal evidence of association with ER- negative breast cancer for BRCA2 mutation carriers (HR = 0.78, 95\% CI: 0.62 to 1.00, P-trend = 0.049). Conclusions: The present findings, in combination with previously identified modifiers of risk, will ultimately lead to more accurate risk prediction and an improved understanding of the disease etiology in BRCA1 and BRCA2 mutation carriers.}, language = {en} } @article{ElMeseryTrebingSchaferetal.2013, author = {El-Mesery, M. and Trebing, J. and Schafer, V. and Weisenberger, D. and Siegmund, D. and Wajant, H.}, title = {CD40-directed scFv-TRAIL fusion proteins induce CD40-restricted tumor cell death and activate dendritic cells}, series = {Cell Death \& Disease}, volume = {4}, journal = {Cell Death \& Disease}, number = {e916}, doi = {10.1038/cddis.2013.402}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128777}, year = {2013}, abstract = {Targeted cancer therapy concepts often aim at the induction of adjuvant antitumor immunity or stimulation of tumor cell apoptosis. There is further evidence that combined application of immune stimulating and tumor apoptosis-inducing compounds elicits a synergistic antitumor effect. Here, we describe the development and characterization of bifunctional fusion proteins consisting of a single-chain variable fragment (scFv) domain derived from the CD40-specific monoclonal antibody G28-5 that is fused to the N-terminus of stabilized trimeric soluble variants of the death ligand TNF-related apoptosis-inducing ligand (TRAIL). As shown before by us and others for other cell surface antigen-targeted scFv-TRAIL fusion proteins, scFv:G28-TRAIL displayed an enhanced capacity to induce apoptosis upon CD40 binding. Studies with scFv:G28 fusion proteins of TRAIL mutants that discriminate between the two TRAIL death receptors, TRAILR1 and TRAILR2, further revealed that the CD40 binding-dependent mode of apoptosis induction of scFv:G28-TRAIL is operable with each of the two TRAIL death receptors. Binding of scFv:G28-TRAIL fusion proteins to CD40 not only result in enhanced TRAIL death receptor signaling but also in activation of the targeted CD40 molecule. In accordance with the latter, the scFv:G28-TRAIL fusion proteins triggered strong CD40-mediated maturation of dendritic cells. The CD40-targeted TRAIL fusion proteins described in this study therefore represent a novel type of bifunctional fusion proteins that couple stimulation of antigen presenting cells and apoptosis induction.}, language = {en} } @article{BachmannSchrederEngelhardtetal.2021, author = {Bachmann, Friederike and Schreder, Martin and Engelhardt, Monika and Langer, Christian and Wolleschak, Denise and M{\"u}gge, Lars Olof and D{\"u}rk, Heinz and Sch{\"a}fer-Eckart, Kerstin and Blau, Igor Wolfgang and Gramatzki, Martin and Liebisch, Peter and Grube, Matthias and Metzler, Ivana v. and Bassermann, Florian and Metzner, Bernd and R{\"o}llig, Christoph and Hertenstein, Bernd and Khandanpour, Cyrus and Dechow, Tobias and Hebart, Holger and Jung, Wolfram and Theurich, Sebastian and Maschmeyer, Georg and Salwender, Hans and Hess, Georg and Bittrich, Max and Rasche, Leo and Brioli, Annamaria and Eckardt, Kai-Uwe and Straka, Christian and Held, Swantje and Einsele, Hermann and Knop, Stefan}, title = {Kinetics of renal function during induction in newly diagnosed multiple myeloma: results of two prospective studies by the German Myeloma Study Group DSMM}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {6}, issn = {2072-6694}, doi = {10.3390/cancers13061322}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234139}, year = {2021}, abstract = {Background: Preservation of kidney function in newly diagnosed (ND) multiple myeloma (MM) helps to prevent excess toxicity. Patients (pts) from two prospective trials were analyzed, provided postinduction (PInd) restaging was performed. Pts received three cycles with bortezomib (btz), cyclophosphamide, and dexamethasone (dex; VCD) or btz, lenalidomide (len), and dex (VRd) or len, adriamycin, and dex (RAD). The minimum required estimated glomerular filtration rate (eGFR) was >30 mL/min. We analyzed the percent change of the renal function using the International Myeloma Working Group (IMWG) criteria and Kidney Disease: Improving Global Outcomes (KDIGO)-defined categories. Results: Seven hundred and seventy-two patients were eligible. Three hundred and fifty-six received VCD, 214 VRd, and 202 RAD. VCD patients had the best baseline eGFR. The proportion of pts with eGFR <45 mL/min decreased from 7.3\% at baseline to 1.9\% PInd (p < 0.0001). Thirty-seven point one percent of VCD versus 49\% of VRd patients had a decrease of GFR (p = 0.0872). IMWG-defined "renal complete response (CRrenal)" was achieved in 17/25 (68\%) pts after VCD, 12/19 (63\%) after RAD, and 14/27 (52\%) after VRd (p = 0.4747). Conclusions: Analyzing a large and representative newly diagnosed myeloma (NDMM) group, we found no difference in CRrenal that occurred independently from the myeloma response across the three regimens. A trend towards deterioration of the renal function with VRd versus VCD may be explained by a better pretreatment "renal fitness" in the latter group.}, language = {en} }