@article{GoetzKunzFinketal.2020, author = {G{\"o}tz, Ralph and Kunz, Tobias C. and Fink, Julian and Solger, Franziska and Schlegel, Jan and Seibel, J{\"u}rgen and Kozjak-Pavlovic, Vera and Rudel, Thomas and Sauer, Markus}, title = {Nanoscale imaging of bacterial infections by sphingolipid expansion microscopy}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-19897-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231248}, year = {2020}, abstract = {Expansion microscopy (ExM) enables super-resolution imaging of proteins and nucleic acids on conventional microscopes. However, imaging of details of the organization of lipid bilayers by light microscopy remains challenging. We introduce an unnatural short-chain azide- and amino-modified sphingolipid ceramide, which upon incorporation into membranes can be labeled by click chemistry and linked into hydrogels, followed by 4x to 10x expansion. Confocal and structured illumination microscopy (SIM) enable imaging of sphingolipids and their interactions with proteins in the plasma membrane and membrane of intracellular organelles with a spatial resolution of 10-20nm. As our functionalized sphingolipids accumulate efficiently in pathogens, we use sphingolipid ExM to investigate bacterial infections of human HeLa229 cells by Neisseria gonorrhoeae, Chlamydia trachomatis and Simkania negevensis with a resolution so far only provided by electron microscopy. In particular, sphingolipid ExM allows us to visualize the inner and outer membrane of intracellular bacteria and determine their distance to 27.6 +/- 7.7nm. Imaging of lipid bilayers using light microscopy is challenging. Here the authors label cells using a short chain click-compatible ceramide to visualize mammalian and bacterial membranes with expansion microscopy.}, language = {en} } @article{KunzRuehlingMoldovanetal.2021, author = {Kunz, Tobias C. and R{\"u}hling, Marcel and Moldovan, Adriana and Paprotka, Kerstin and Kozjak-Pavlovic, Vera and Rudel, Thomas and Fraunholz, Martin}, title = {The Expandables: Cracking the Staphylococcal Cell Wall for Expansion Microscopy}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {11}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2021.644750}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232292}, year = {2021}, abstract = {Expansion Microscopy (ExM) is a novel tool improving the resolution of fluorescence microscopy by linking the sample into a hydrogel that gets physically expanded in water. Previously, we have used ExM to visualize the intracellular Gram-negative pathogens Chlamydia trachomatis, Simkania negevensis, and Neisseria gonorrhoeae. Gram-positive bacteria have a rigid and thick cell wall that impedes classic expansion strategies. Here we developed an approach, which included a series of enzymatic treatments resulting in isotropic 4× expansion of the Gram-positive pathogen Staphylococcus aureus. We further demonstrate the suitability of the technique for imaging of planktonic bacteria as well as endocytosed, intracellular bacteria at a spatial resolution of approximately 60 nm with conventional confocal laser scanning microscopy.}, language = {en} } @article{KunzGoetzGaoetal.2020, author = {Kunz, Tobias C. and G{\"o}tz, Ralph and Gao, Shiqiang and Sauer, Markus and Kozjak-Pavlovic, Vera}, title = {Using Expansion Microscopy to Visualize and Characterize the Morphology of Mitochondrial Cristae}, series = {Frontiers in Cell and Developmental Biology}, volume = {8}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2020.00617}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208296}, year = {2020}, abstract = {Mitochondria are double membrane bound organelles indispensable for biological processes such as apoptosis, cell signaling, and the production of many important metabolites, which includes ATP that is generated during the process known as oxidative phosphorylation (OXPHOS). The inner membrane contains folds called cristae, which increase the membrane surface and thus the amount of membrane-bound proteins necessary for the OXPHOS. These folds have been of great interest not only because of their importance for energy conversion, but also because changes in morphology have been linked to a broad range of diseases from cancer, diabetes, neurodegenerative diseases, to aging and infection. With a distance between opposing cristae membranes often below 100 nm, conventional fluorescence imaging cannot provide a resolution sufficient for resolving these structures. For this reason, various highly specialized super-resolution methods including dSTORM, PALM, STED, and SIM have been applied for cristae visualization. Expansion Microscopy (ExM) offers the possibility to perform super-resolution microscopy on conventional confocal microscopes by embedding the sample into a swellable hydrogel that is isotropically expanded by a factor of 4-4.5, improving the resolution to 60-70 nm on conventional confocal microscopes, which can be further increased to ∼ 30 nm laterally using SIM. Here, we demonstrate that the expression of the mitochondrial creatine kinase MtCK linked to marker protein GFP (MtCK-GFP), which localizes to the space between the outer and the inner mitochondrial membrane, can be used as a cristae marker. Applying ExM on mitochondria labeled with this construct enables visualization of morphological changes of cristae and localization studies of mitochondrial proteins relative to cristae without the need for specialized setups. For the first time we present the combination of specific mitochondrial intermembrane space labeling and ExM as a tool for studying internal structure of mitochondria.}, language = {en} } @article{WagnerKunzChowdhuryetal.2019, author = {Wagner, Fabienne and Kunz, Tobias C. and Chowdhury, Suvagata R. and Thiede, Bernd and Fraunholz, Martin and Eger, Debora and Kozjak-Pavlovic, Vera}, title = {Armadillo repeat-containing protein 1 is a dual localization protein associated with mitochondrial intermembrane space bridging complex}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0218303}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202670}, pages = {e0218303}, year = {2019}, abstract = {Cristae architecture is important for the function of mitochondria, the organelles that play the central role in many cellular processes. The mitochondrial contact site and cristae organizing system (MICOS) together with the sorting and assembly machinery (SAM) forms the mitochondrial intermembrane space bridging complex (MIB), a large protein complex present in mammalian mitochondria that partakes in the formation and maintenance of cristae. We report here a new subunit of the mammalian MICOS/MIB complex, an armadillo repeat-containing protein 1 (ArmC1). ArmC1 localizes both to cytosol and mitochondria, where it associates with the outer mitochondrial membrane through its carboxy-terminus. ArmC1 interacts with other constituents of the MICOS/MIB complex and its amounts are reduced upon MICOS/MIB complex depletion. Mitochondria lacking ArmC1 do not show defects in cristae structure, respiration or protein content, but appear fragmented and with reduced motility. ArmC1 represents therefore a peripheral MICOS/MIB component that appears to play a role in mitochondrial distribution in the cell.}, language = {en} } @article{KunzKozjakPavlovic2019, author = {Kunz, Tobias C. and Kozjak-Pavlovic, Vera}, title = {Diverse facets of sphingolipid involvement in bacterial infections}, series = {Frontiers in Cell and Developmental Biology}, volume = {7}, journal = {Frontiers in Cell and Developmental Biology}, number = {203}, doi = {10.3389/fcell.2019.00203}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201757}, year = {2019}, abstract = {Sphingolipids are constituents of the cell membrane that perform various tasks as structural elements and signaling molecules, in addition to regulating many important cellular processes, such as apoptosis and autophagy. In recent years, it has become increasingly clear that sphingolipids and sphingolipid signaling play a vital role in infection processes. In many cases the attachment and uptake of pathogenic bacteria, as well as bacterial development and survival within the host cell depend on sphingolipids. In addition, sphingolipids can serve as antimicrobials, inhibiting bacterial growth and formation of biofilms. This review will give an overview of our current information about these various aspects of sphingolipid involvement in bacterial infections.}, language = {en} }