@article{SchofferSchueleinArandetal.2016, author = {Schoffer, Olaf and Sch{\"u}lein, Stefanie and Arand, Gerlinde and Arnholdt, Hans and Baaske, Dieter and Bargou, Ralf C. and Becker, Nikolaus and Beckmann, Matthias W. and Bodack, Yves and B{\"o}hme, Beatrix and Bozkurt, Tayfun and Breitsprecher, Regine and Buchali, Andre and Burger, Elke and Burger, Ulrike and Dommisch, Klaus and Elsner, Gudrun and Fernschild, Karin and Flintzer, Ulrike and Funke, Uwe and Gerken, Michael and G{\"o}bel, Hubert and Grobe, Norbert and Gumpp, Vera and Heinzerling, Lucie and Kempfer, Lana Raffaela and Kiani, Alexander and Klinkhammer-Schalke, Monika and Kl{\"o}cking, Sabine and Kreibich, Ute and Knabner, Katrin and Kuhn, Peter and Lutze, Stine and M{\"a}der, Uwe and Maisel, Tanja and Maschke, Jan and Middeke, Martin and Neubauer, Andreas and Niedostatek, Antje and Opazo-Saez, Anabelle and Peters, Christoph and Schell, Beatrice and Schenkirsch, Gerhard and Schmalenberg, Harald and Schmidt, Peter and Schneider, Constanze and Schubotz, Birgit and Seide, Anika and Strecker, Paul and Taubenheim, Sabine and Wackes, Matthias and Weiß, Steffen and Welke, Claudia and Werner, Carmen and Wittekind, Christian and Wulff, J{\"o}rg and Zettl, Heike and Klug, Stefanie J.}, title = {Tumour stage distribution and survival of malignant melanoma in Germany 2002-2011}, series = {BMC Cancer}, volume = {16}, journal = {BMC Cancer}, number = {936}, doi = {10.1186/s12885-016-2963-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164544}, year = {2016}, abstract = {Background Over the past two decades, there has been a rising trend in malignant melanoma incidence worldwide. In 2008, Germany introduced a nationwide skin cancer screening program starting at age 35. The aims of this study were to analyse the distribution of malignant melanoma tumour stages over time, as well as demographic and regional differences in stage distribution and survival of melanoma patients. Methods Pooled data from 61 895 malignant melanoma patients diagnosed between 2002 and 2011 and documented in 28 German population-based and hospital-based clinical cancer registries were analysed using descriptive methods, joinpoint regression, logistic regression and relative survival. Results The number of annually documented cases increased by 53.2\% between 2002 (N = 4 779) and 2011 (N = 7 320). There was a statistically significant continuous positive trend in the proportion of stage UICC I cases diagnosed between 2002 and 2011, compared to a negative trend for stage UICC II. No trends were found for stages UICC III and IV respectively. Age (OR 0.97, 95\% CI 0.97-0.97), sex (OR 1.18, 95\% CI 1.11-1.25), date of diagnosis (OR 1.05, 95\% CI 1.04-1.06), 'diagnosis during screening' (OR 3.24, 95\% CI 2.50-4.19) and place of residence (OR 1.23, 95\% CI 1.16-1.30) had a statistically significant influence on the tumour stage at diagnosis. The overall 5-year relative survival for invasive cases was 83.4\% (95\% CI 82.8-83.9\%). Conclusions No distinct changes in the distribution of malignant melanoma tumour stages among those aged 35 and older were seen that could be directly attributed to the introduction of skin cancer screening in 2008. "}, language = {en} } @phdthesis{Werner2015, author = {Werner, Vera}, title = {Pharmaceutically relevant protein-protein interactions for controlled drug delivery}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117409}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Protein-protein interactions play a crucial role in the development of drug delivery devices for the increasingly important biologicals, including antibodies, growth factors and cytokines. The understanding thereof might offer opportunities for tailoring carriers or drug proteins specifically for this purpose and thereby allow controlled delivery to a chosen target. The possible applications range from trigger-dependent release to sustained drug delivery and possibly permanently present stimuli, depending on the anticipated mechanism. Silk fibroin (SF) is a biomaterial that is suitable as a carrier for protein drug delivery devices. It combines processability under mild conditions, good biocompatibility and stabilizing effects on incorporated proteins. As SF is naturally produced by spiders and silkworms, the understanding of this process and its major factors might offer a blueprint for formulation scientists, interested in working with this biopolymer. The natural process of silk spinning covers a fascinating versatility of aggregate states, ranging from colloidal solutions through hydrogels to solid systems. The transition among these states is controlled by a carefully orchestrated process in vivo. Major players within the natural process include the control of spatial pH throughout passage of the silk dope, the composition and type of ions, and fluid flow mechanics within the duct, respectively. The function of these input parameters on the spinning process is reviewed before detailing their impact on the design and manufacture of silk based drug delivery systems (DDS). Examples are reported including the control of hydrogel formation during storage or significant parameters controlling precipitation in the presence of appropriate salts, respectively. The review details the use of silk fibroin to develop liquid, semiliquid or solid DDS with a focus on the control of SF crystallization, particle formation, and drug-SF interaction for tailored drug load. Although we were able to show many examples for SF drug delivery applications and there are many publications about the loading of biologics to SF systems, the mechanism of interaction between both in solution was not yet extensively explored. This is why we made this the subject of our work, as it might allow for direct influence on pharmaceutical parameters, like aggregation and drug load. In order to understand the underlying mechanism for the interaction between SF and positively charged model proteins, we used isothermal titration calorimetry for thermodynamic characterization. This was supported by hydrophobicity analysis and by colloidal characterization methods including static light scattering, nanoparticle tracking analysis and zeta potential measurements. We studied the effects of three Hofmeister salts - NaCl (neutral), NaSCN (chaotropic) and Na2SO4 (cosmotropic) - and the pH on the interaction of SF with the model proteins in dependence of the ratio from one to another. The salts impacted the SF structure by stabilizing (cosmotropic) or destabilizing (chaotropic) the SF micelles, resulting in completely abolished (cosmotropic) or strongly enhanced (chaotropic) interaction. These effects were responsible for different levels of loading and coacervation when varying type of salt and its concentration. Additionally, NaCl and NaSCN were able to prolong the stability of aqueous SF solution during storage at 25°C in a preliminary study. Another approach to influence protein-protein interactions was followed by covalent modification. Interleukin-4 (IL-4) is a cytokine driving macrophages to M2 macrophages, which are known to provide anti-inflammatory effects. The possibility to regulate the polarization of macrophages to this state might be attractive for a variety of diseases, like atherosclerosis, in which macrophages are involved. As these cases demand a long-term treatment, this polarization was supposed to be maintained over time and we were planning to achieve this by keeping IL-4 permanently present in an immobilized way. In order to immobilize it, we genetically introduced an alkyne-carrying, artificial amino acid in the IL-4 sequence. This allowed access to a site-specific click reaction (Cu(I)-catalyzed Huisgen azide-alkyne cycloaddition) with an azide partner. This study was able to set the basis for the project by successful expression and purification of the IL-4 analogue and by proving the availability for the click reaction and maintained bioactivity. The other side of this project was the isolation of human monocytes and the polarization and characterization of human macrophages. The challenge here was that the majority of related research was based on murine macrophages which was not applicable to human cells and the successful work was so far limited to establishing the necessary methods. In conclusion, we were able to show two different methods that allow the influence of protein-protein interactions and thereby the possible tailoring of drug loading. Although the results were very promising for both systems, their applicability in the development of drug delivery devices needs to be shown by further studies.}, subject = {Protein-Protein-Wechselwirkung}, language = {en} } @article{BeyerJadaszSamperAgreloetal.2020, author = {Beyer, Felix and Jadasz, Janusz and Samper Agrelo, Iria and Schira-Heinen, Jessica and Groh, Janos and Manousi, Anastasia and B{\"u}termann, Christine and Estrada, Veronica and Reiche, Laura and Cantone, Martina and Vera, Julio and Vigan{\`o}, Francesca and Dimou, Leda and M{\"u}ller, Hans Werner and Hartung, Hans-Peter and K{\"u}ry, Patrick}, title = {Heterogeneous fate choice of genetically modulated adult neural stem cells in gray and white matter of the central nervous system}, series = {Glia}, volume = {68}, journal = {Glia}, number = {2}, doi = {10.1002/glia.23724}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218566}, pages = {393 -- 406}, year = {2020}, abstract = {Apart from dedicated oligodendroglial progenitor cells, adult neural stem cells (aNSCs) can also give rise to new oligodendrocytes in the adult central nervous system (CNS). This process mainly confers myelinating glial cell replacement in pathological situations and can hence contribute to glial heterogeneity. Our previous studies demonstrated that the p57kip2 gene encodes an intrinsic regulator of glial fate acquisition and we here investigated to what degree its modulation can affect stem cell-dependent oligodendrogenesis in different CNS environments. We therefore transplanted p57kip2 knockdown aNSCs into white and gray matter (WM and GM) regions of the mouse brain, into uninjured spinal cords as well as in the vicinity of spinal cord injuries and evaluated integration and differentiation in vivo. Our experiments revealed that under healthy conditions intrinsic suppression of p57kip2 as well as WM localization promote differentiation toward myelinating oligodendrocytes at the expense of astrocyte generation. Moreover, p57kip2 knockdown conferred a strong benefit on cell survival augmenting net oligodendrocyte generation. In the vicinity of hemisectioned spinal cords, the gene knockdown led to a similar induction of oligodendroglial features; however, newly generated oligodendrocytes appeared to suffer more from the hostile environment. This study contributes to our understanding of mechanisms of adult oligodendrogenesis and glial heterogeneity and further reveals critical factors when considering aNSC mediated cell replacement in injury and disease.}, language = {en} }