@article{WalterGrussNeidlingeretal.2020, author = {Walter, Steffen and Gruss, Sascha and Neidlinger, Jana and Stross, Isabelle and Hann, Alexander and Wagner, Martin and Seufferlein, Thomas and Walter, Benjamin}, title = {Evaluation of an Objective Measurement Tool for Stress Level Reduction by Individually Chosen Music During Colonoscopy—Results From the Study "ColoRelaxTone"}, series = {Frontiers in Medicine}, volume = {7}, journal = {Frontiers in Medicine}, doi = {10.3389/fmed.2020.00525}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212337}, year = {2020}, abstract = {Background and Aims: Colonoscopy as standard procedure in endoscopy is often perceived as uncomfortable for patients. Patient's anxiety is therefore a significant issue, which often lead to avoidance of participation of relevant examinations as CRC-screening. Non-pharmacological anxiety management interventions such as music might contribute to relaxation in the phase prior and during endoscopy. Although music's anxiolytic effects have been reported previously, no objective measurement of stress level reduction has been reported yet. Focus of this study was to evaluate the objective measurement of the state of relaxation in patients undergoing colonoscopy. Methods: Prospective study (n = 196) performed at one endoscopic high-volume center. Standard colonoscopy was performed in control group. Interventional group received additionally self-chosen music over earphones. Facial Electromyography (fEMG) activity was obtained. Clinician Satisfaction with Sedation Instrument (CSSI) and Patients Satisfaction with Sedation Instrument (PSSI) was answered by colonoscopists and patients, respectively. Overall satisfaction with music accompanied colonoscopy was obtained if applicable. Results: Mean difference measured by fEMG via musculus zygomaticus major indicated a significantly lower stress level in the music group [7.700(±5.560) μV vs. 4.820(±3.330) μV; p = 0.001]. Clinician satisfaction was significantly higher with patients listening to music [82.69(±15.04) vs. 87.3(±15.02) pts.; p = 0.001]. Patient's satisfaction was higher but did not differ significantly. Conclusions: We conclude that self-chosen music contributes objectively to a reduced stress level for patients and therefore subjectively perceived satisfaction for endoscopists. Therefore, music should be considered as a non-pharmacological treatment method of distress reduction especially in the beginning of endoscopic procedures.}, language = {en} } @article{AeschlimannBrixnerCinchettietal.2017, author = {Aeschlimann, Martin and Brixner, Tobias and Cinchetti, Mirko and Frisch, Benjamin and Hecht, Bert and Hensen, Matthias and Huber, Bernhard and Kramer, Christian and Krauss, Enno and Loeber, Thomas H. and Pfeiffer, Walter and Piecuch, Martin and Thielen, Philip}, title = {Cavity-assisted ultrafast long-range periodic energy transfer between plasmonic nanoantennas}, series = {Light: Science \& Applications}, volume = {6}, journal = {Light: Science \& Applications}, doi = {10.1038/lsa.2017.111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173265}, year = {2017}, abstract = {Radiationless energy transfer is at the core of diverse phenomena, such as light harvesting in photosynthesis\(^1\), energy-transfer-based microspectroscopies\(^2\), nanoscale quantum entanglement\(^3\) and photonic-mode hybridization\(^4\). Typically, the transfer is efficient only for separations that are much shorter than the diffraction limit. This hampers its application in optical communication and quantum information processing, which require spatially selective addressing. Here, we demonstrate highly efficient radiationless coherent energy transfer over a distance of twice the excitation wavelength by combining localized and delocalized\(^5\) plasmonic modes. Analogous to the Tavis-Cummings model, two whispering-gallery-mode antennas\(^6\) placed in the foci of an elliptical plasmonic cavity\(^7\) fabricated from single-crystal gold plates act as a pair of oscillators coupled to a common cavity mode. Time-resolved two-photon photoemission electron microscopy (TR 2P-PEEM) reveals an ultrafast long-range periodic energy transfer in accordance with the simulations. Our observations open perspectives for the optimization and tailoring of mesoscopic energy transfer and long-range quantum emitter coupling.}, language = {en} } @article{GrzesikBaumannWalteretal.2021, author = {Grzesik, Benjamin and Baumann, Tom and Walter, Thomas and Flederer, Frank and Sittner, Felix and Dilger, Erik and Gl{\"a}sner, Simon and Kirchler, Jan-Luca and Tedsen, Marvyn and Montenegro, Sergio and Stoll, Enrico}, title = {InnoCube — a wireless satellite platform to demonstrate innovative technologies}, series = {Aerospace}, volume = {8}, journal = {Aerospace}, number = {5}, issn = {2226-4310}, doi = {10.3390/aerospace8050127}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239564}, year = {2021}, abstract = {A new innovative satellite mission, the Innovative CubeSat for Education (InnoCube), is addressed. The goal of the mission is to demonstrate "the wireless satellite", which replaces the data harness by robust, high-speed, real-time, very short-range radio communications using the SKITH (SKIpTheHarness) technology. This will make InnoCube the first wireless satellite in history. Another technology demonstration is an experimental energy-storing satellite structure that was developed in the previous Wall\#E project and might replace conventional battery technology in the future. As a further payload, the hardware for the concept of a software-based solution for receiving signals from Global Navigation Satellite Systems (GNSS) will be developed to enable precise position determination of the CubeSat. Aside from technical goals this work aims to be of use in the teaching of engineering skills and practical sustainable education of students, important technical and scientific publications, and the increase of university skills. This article gives an overview of the overall design of the InnoCube.}, language = {en} }