@article{OnoSonoyamaNemaetal.2014, author = {Ono, Mitsuaki and Sonoyama, Wataru and Nema, Kazuki and Hara, Emilio Satoshi and Oida, Yasutaka and Pham, Hai Thanh and Yamamoto, Katushi and Hirota, Kazuo and Sugama, Kazushige and Sebald, Walter and Kuboki, Takuo}, title = {Regeneration of calvarial defects with Escherichia coli-derived rhBMP-2 adsorbed in PLGA membrane}, series = {Cells Tissues Organs}, volume = {198}, journal = {Cells Tissues Organs}, number = {5}, issn = {1422-6405}, doi = {10.1159/000356947}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196680}, pages = {367 -- 376}, year = {2014}, abstract = {Objective: Escherichia coli-derived recombinant human bone morphogenetic protein-2 (E-BMP-2) has been shown to be as effective as mammalian cell-derived BMP-2. However, several in vitro and in vivo experiments are still necessary to validate the effectiveness of E-BMP-2 due to the difference in synthesis process, mainly related to protein nonglycosylation. The objective of this study was to investigate whether biodegradable polylactide-co-glycolide (PLGA) membrane is a suitable carrier for E-BMP-2 delivery for bone regeneration of critical-sized defects in rat calvaria. Materials and Methods: First, the osteoinductive effect of E-BMP-2 was confirmed in vitro in mouse bone marrow stromal cells by analysis of osteocalcin mRNA levels, and calcium deposition was detected by alizarin red staining. Before in vivo experiments, the release profile of E-BMP-2 from PLGA membranes was determined by ELISA. E-BMP-2 (0, 1, 5 and 10 μg/μl) was applied for ectopic and orthotopic bone formation and was analyzed by X-ray, micro-CT and histology. Results: Release-profile testing showed that PLGA membrane could retain 94\% of the initially applied E-BMP-2. Ectopic bone formation assay revealed that combination of E-BMP-2/PLGA membrane strongly induced bone formation. Stronger osteoinductivity with complete repair of critical-sized defects was observed only with PLGA membranes adsorbed with 5 and 10 μg/μl of E-BMP-2, whereas no bone formation was observed in the groups that received no membrane or 0-μg/μl dose of E-BMP-2. Conclusion: PLGA membrane was shown to be a suitable carrier for sustained release of E-BMP-2, and the E-BMP-2/PLGA membrane combination was demonstrated to be efficient in bone regeneration in a model of critical-sized defects.}, language = {en} } @article{SeherNickelMuelleretal.2011, author = {Seher, Axel and Nickel, Joachim and Mueller, Thomas D. and Kneitz, Susanne and Gebhardt, Susanne and Meyer ter Vehn, Tobias and Schlunck, Guenther and Sebald, Walter}, title = {Gene expression profiling of connective tissue growth factor (CTGF) stimulated primary human tenon fibroblasts reveals an inflammatory and wound healing response in vitro}, series = {Molecular Vision}, volume = {17}, journal = {Molecular Vision}, number = {08. Okt}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140189}, pages = {53-62}, year = {2011}, abstract = {Purpose: The biologic relevance of human connective tissue growth factor (hCTGF) for primary human tenon fibroblasts (HTFs) was investigated by RNA expression profiling using affymetrix (TM) oligonucleotide array technology to identify genes that are regulated by hCTGF. Methods: Recombinant hCTGF was expressed in HEK293T cells and purified by affinity and gel chromatography. Specificity and biologic activity of hCTGF was confirmed by biosensor interaction analysis and proliferation assays. For RNA expression profiling HTFs were stimulated with hCTGF for 48h and analyzed using affymetrix (TM) oligonucleotide array technology. Results were validated by real time RT-PCR. Results: hCTGF induces various groups of genes responsible for a wound healing and inflammatory response in HTFs. A new subset of CTGF inducible inflammatory genes was discovered (e.g., chemokine [C-X-C motif] ligand 1 [CXCL1], chemokine [C-X-C motif] ligand 6 [CXCL6], interleukin 6 [IL6], and interleukin 8 [IL8]). We also identified genes that can transmit the known biologic functions initiated by CTGF such as proliferation and extracellular matrix remodelling. Of special interest is a group of genes, e.g., osteoglycin (OGN) and osteomodulin (OMD), which are known to play a key role in osteoblast biology. Conclusions: This study specifies the important role of hCTGF for primary tenon fibroblast function. The RNA expression profile yields new insights into the relevance of hCTGF in influencing biologic processes like wound healing, inflammation, proliferation, and extracellular matrix remodelling in vitro via transcriptional regulation of specific genes. The results suggest that CTGF potentially acts as a modulating factor in inflammatory and wound healing response in fibroblasts of the human eye.}, language = {en} } @article{NeupertSebaldSchwabetal.1969, author = {Neupert, W. and Sebald, Walter and Schwab, A. J. and Pfaller, A. and B{\"u}cher, T.}, title = {Puromycin sensitivity of ribosomal label after incorporation of \(^{14}\)C-labelled amino acids into isolated mitochondria from Neurospora crassa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62899}, year = {1969}, abstract = {Radioactive amino acids were incorporated into isolated mitochondria from Neurospora crassa. Then the mitochondrial ribosomes were isolated and submitted to density gradient centrifugation. A preferential labelling of polysomes was observed. However, when the mitochondrial suspension was treated with puromycin after amino acid incorporation, no radioactivity could be detected in either the monosomes or the polysomes. The conclusion is drawn that isolated mitochondria under these conditions do not incorporate significant amounts of amino acids into proteins of their ribosomes.}, subject = {Biochemie}, language = {en} } @article{SebaldSchwabBuecher1969, author = {Sebald, Walter and Schwab, A. J. and B{\"u}cher, T.}, title = {Cycloheximide resistant amino acid incorporation into mitochondrial protein from Neurospora crassa in vivo}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62900}, year = {1969}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{SebaldHofstoetterHackeretal.1969, author = {Sebald, Walter and Hofst{\"o}tter, T. and Hacker, D. and B{\"u}cher, T.}, title = {Incorporation of amino acids into mitochondrial protein of the flight muscle of Locusta migratoria in vitro and in vivo in the presence of cycloheximide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62919}, year = {1969}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{SebaldBuecherOlbrichetal.1968, author = {Sebald, Walter and B{\"u}cher, T. and Olbrich, B. and Kaudewitz, F.}, title = {Electrophoretic pattern of and amino acid incorporation in vitro into the insoluble mitochondrial protein of neurospora crassa wild type and mi-1 mutant}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62926}, year = {1968}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{MerzFliednerLehrnbecheretal.1990, author = {Merz, H. and Fliedner, A. and Lehrnbecher, T. and Sebald, Walter and M{\"u}ller-Hermelink, H. K. and Feller, A. C.}, title = {Cytokine expression in B-cell non-Hodgkin lymphomas}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62539}, year = {1990}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{WeigelMeyerSebald1989, author = {Weigel, U. and Meyer, M. and Sebald, Walter}, title = {Mutant proteins of human interleukin 2. Renaturation yield, proliferative activity and receptor binding}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62543}, year = {1989}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{FlueggeFischerGrossetal.1989, author = {Fl{\"u}gge, U. I. and Fischer, K. and Gross, A. and Sebald, Walter and Lottspeich, F. and Eckerskorn, C.}, title = {The triose phosphate-3-phosphoglycerate-phosphate translocator from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62559}, year = {1989}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{KleenePfannerPfalleretal.1987, author = {Kleene, R. and Pfanner, N. and Pfaller, R. and Link, T. A. and Sebald, Walter and Neupert, W. and Tropschug, M.}, title = {Mitochondrial porin of Neurospora crassa: cDNA cloning, in vitro expression and import into mitochondria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62566}, year = {1987}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{RoemischTropschugSebaldetal.1987, author = {R{\"o}misch, J. and Tropschug, M. and Sebald, Walter and Weiss, H.}, title = {The primary structure of cytochrome c\(_1\) from Neurospora crassa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62578}, year = {1987}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{WeichSebaldSchaireretal.1986, author = {Weich, H. A. and Sebald, Walter and Schairer, H. U. and Hoppe, J.}, title = {The human osteosarcoma cell line U-2 OS expresses a 3.8 kilobase mRNA which codes for the sequence of the PDGF-B chain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62588}, year = {1986}, abstract = {A cDNA clone of about 2500 basepairswas prepared from the human osteosarcoma cellline U-2 OS by hybridizing with a v-sis probe. Sequence analysis showed that this cDNA contains the coding region for the PDGF-B chain. Here we report that the mitogen secreted by these osteosarcoma cells contains the PDGF-B chain and is probably a homodimer of two B-chains.}, subject = {Biochemie}, language = {en} } @article{ArendsSebald1984, author = {Arends, H. and Sebald, Walter}, title = {Nucleotide sequence of the cloned mRNA and gene of the ADP/ATP carrier from Neurospora crassa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62684}, year = {1984}, abstract = {A cDNA complementary to the mRNA of the ADPIATP carrier from Neurospora crassa was identified among ordered cDNA clones by hybridizing total polyadenylated RNA to pools of 96 cDNA recombinant plasmids and subsequent cellfree translation of hybridization-selected mRNA. Further carrier cDNAs were found by colony fdter hybridization at a frequency of 0.2-0.3\%. The gene of the carrier was cloned and isolated on a 4.6-kbp EcoRl fragment of total Neurospora DNA, and the start of the mRNA was determined by Sl nuclease mapping. From the nucleotide sequence of the cDNA and the genomic DNA, the primary structure of the gene, of the mRNA and of the ADP I ATP carrier protein could be deduced. The gene occurs in a single copy in the genome and related genes are absent. It contains two short introns, and a pyrimidine-rieb promoter region. The mRNA has a 46-bp 5 1 end and a 219-bp 3 1 end. There is an open reading frame coding for the 313 amino acid residues of the Neurospora carrier protein. The amino acid sequence is homologous in 148 positions with the established primary structure of the beef heart carrier.}, subject = {Biochemie}, language = {en} } @article{VeloursEsparzaHoppeetal.1984, author = {Velours, J. and Esparza, M. and Hoppe, J. and Sebald, Walter and Guerin, B.}, title = {Amino acid sequence of a new mitochondrially synthesized proteolipid of the ATP synthase of Saccharomyces cerevisiae}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62695}, year = {1984}, abstract = {The purification and the amino acid sequence of a proteolipid translated on ribosomes in yeast mitochondria is reported. This protein, which is a subunit of the A TP synthase, was purified by extraction with chloroform/methanol (2/1) and subsequent chromatography on phosphocellulose and reverse phase h.p.l.c. A mol. wt. of 5500 was estimated by chromatography on Bio-Gel P-30 in 8011/o fonnie acid. The complete amino acid sequence of this protein was determined by automated solid phase Edman degradation of the whole protein and of fragments obtained after cleavage with cyanogen bromide. The sequence analysis indicates a length of 48 amino acid residues. The calculated mol. wt. of 5870 corresponds to the value found by gel chromatography. This polypeptide contains three basic residues and no negatively charged side chain. The three basic residues are clustered at the C terminus. The primary structure of this protein is in full agreement with the predicted amino acid sequence of the putative polypeptide encoded by the mitochondrial aap1 gene recently discovered in Saccharomyces cerevisiae. Moreover, this protein shows 5011/o homology with the amino acid sequence of a putative polypeptide encoded by an unidentified reading frame also discovered near the mitochondrial ATPase subunit 6 genein Aspergillus nidulans.}, subject = {Biochemie}, language = {en} } @article{HoppeFriedlSchaireretal.1983, author = {Hoppe, J. and Friedl, P. and Schairer, H. U. and Sebald, Walter and Meyenburg, K. von and Jorgensen, B. B.}, title = {The topology of the proton translocating F\(_0\) component of the ATP synthase from E. coli K12: studies with proteases}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62718}, year = {1983}, abstract = {The accessibility of the three F\(_0\) subunits a, b and c from the Escherichia coli Kll A TP synthase to various proteases was studied in F\(_1\)-depleted inverted membrane vesicles. Subunit b was very sensitive to all applied proteases. Chymotrypsin produced a defined fragment of mol. wt. 1S 000 which remained tightly bound to the membrane. The cleavage site was located at the C-terminal region of subunit b. Larger amounts of proteases were necessary to attack subunit a (mol. wt. 30 000). There was no detectable deavage of subunit c. It is suggested that the major hydrophilic part of subunit b extends from the membrane into the cytoplasm and is in contact with the F\(_1\) sector. The F\(_1\) sector was found to afford some protection against proteolysis oftheb subunit in vitro andin vivo. Protease digestion bad no influence on the electro-impelled H\(^+\) conduction via F\(_0\) bot ATP-dependent H\(^+\) translocation could not be reconstituted upon binding of F\(_1\)• A possible role for subunit b as a linker between catalytic events on the F\(_1\) component and the proton pathway across the membrane is discussed.}, subject = {Biochemie}, language = {en} } @article{SchairerHoppeSebaldetal.1982, author = {Schairer, H. U. and Hoppe, J. and Sebald, Walter and Friedl, P.}, title = {Topological and functional aspects of the proton conductor, F\(_0\), of the Escherichia coli ATP-synthase}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62721}, year = {1982}, abstract = {The isolated H\(^+\) conductor, F\(_0\) , of the Escherichia co1i ATP-synthase consists of three subunits, a, b, and c. H\(^+\) -permeable liposomes can be reconstit~ted with F\(_0\) and lipids; addition of F\(_1\)-ATPase reconstitutes a functional ATP-synthase. Mutants with altered or misslng F\(_0\) subunits are defective in H\(^+\) conduction. Thus, all three subunits are necessary for the expression of H\(^+\) conduction. The subunits a and b contain binding sites for F\(_1\)• Computer calculations, cross-links, membrane-permeating photo-reactive labels, and proteases were used to develop tentative structural models for the individual F\(_0\) subunits.}, subject = {Biochemie}, language = {en} } @article{SebaldFriedlSchaireretal.1982, author = {Sebald, Walter and Friedl, P. and Schairer, H. U. and Hoppe, J.}, title = {Structure and genetics of the H\(^+\)-conducting F\(_0\) portion of the ATP synthase}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62733}, year = {1982}, abstract = {The ATP synthase occurs in remarkably conserved form in procaryotic and eucaryotic cells. Thus, our present knowledge of ATP synthase is derived from sturlies of the enzyme from different organisms, each affering specific experimental possibilities. In recent tim es, research on the H\(^+\) -conducting F0 part of the ATP synthase has been greatly stimulated by two developments in the Escherichio coli system. Firstly, the purification and reconstitution of the whole ATP synthase as weil as the proton conductor Fa from E. coli have been achieved. These functionally active preparations are well defined in terms of subunit composition, similar to the thermophilic enzyme from PS-3 studied by Kagawa's group.u Secondly, the genetics and the molecular cloning of the genes of all the F\(_0\) subunits from E. coli yielded information on the function of subunit polypeptides and essential amino acid residues. Furthermore, the amino acid sequence of hydrophobic F\(_0\) subunits, which are difficult to analyze by protein-chemical techniques, could be derived from the nucleotide sequence of the genes. These achievements, which shall be briefly summarized in the next part of this communication, provide the framework to study specific aspects of the structure and function of the F\(_0\) subunits.}, subject = {Biochemie}, language = {en} } @article{ViebrockPerzSebald1982, author = {Viebrock, A. and Perz, A. and Sebald, Walter}, title = {The imported preprotein of the proteolipid subunit of the mitochondrial ATP synthase from Neurospora crassa. Molecular cloning and sequencing of the mRNA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62742}, year = {1982}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{HoppeSebald1980, author = {Hoppe, J. and Sebald, Walter}, title = {Amino acid sequence of the proteolipid subunit of the proton-translocating ATPase complex from the thermophilic bacterium PS-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62754}, year = {1980}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{HoppeGattiWeberetal.1986, author = {Hoppe, J. and Gatti, D. and Weber, H. and Sebald, Walter}, title = {Labeling of individual amino acid residues in the membrane-embedded F\(_0\) part of the F\(_1\) F\(_0\) ATP synthase from Neurospora crassa. Influence of oligomycin and dicyclohexylcarbodiimide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62598}, year = {1986}, abstract = {Three F0 subunits and the F\(_1\) subunit P of the ATP synthase from Neurospora crassa were labeled with the lipophilic photoactivatable reagent 3-(trifluoromethyl)-3-(m-[\(^{125}\)I]iodophenyl)diazirine ([\(^{125}\)I]TID). In the proteolipid subunit which was the most heavily labeled polypeptide labeling was confmed to five residues at the NH2-terminus and five residues at the C-terminus ofthe protein. Labeling occurred at similar positions compared with the homologaus protein (subunit c) in the ATP synthase from Escherichia coli, indicating a similar structure of the proteolipid subunits in their respective organisms. The inhibitors oligomycin and dicyclohexylcarbodiimide did not change the pattern of accessible surface residues in the proteolipid, suggesting that neither inhibitor induces gross conformational changes. However, in the presence of oligomycin, the extent oflabeling in some residues was reduced. Apparently, these residues provide part of the binding site for the inhibitor. After reaction with dicyclohexylcarbodiimide an additional labeled amino acid was found at position 65 corresponding to the invariant carbod{\"u}mide-binding glutamic acid. These results and previous observations indicate that the carboxyl side chain of Glu-65 is located at the protein-lipid interphase. The idea is discussed that proton translocation occurs at the interphase between different types if F\(_0\) subunits. Dicyclohexylcarbodiimide or oligomycin might disturb this essential interaction between the F\(_0\) subunits.}, subject = {Biochemie}, language = {en} }