@article{LiuChenGaoetal.2017, author = {Liu, Han and Chen, Chunhai and Gao, Zexia and Min, Jiumeng and Gu, Yongming and Jian, Jianbo and Jiang, Xiewu and Cai, Huimin and Ebersberger, Ingo and Xu, Meng and Zhang, Xinhui and Chen, Jianwei and Luo, Wei and Chen, Boxiang and Chen, Junhui and Liu, Hong and Li, Jiang and Lai, Ruifang and Bai, Mingzhou and Wei, Jin and Yi, Shaokui and Wang, Huanling and Cao, Xiaojuan and Zhou, Xiaoyun and Zhao, Yuhua and Wei, Kaijian and Yang, Ruibin and Liu, Bingnan and Zhao, Shancen and Fang, Xiaodong and Schartl, Manfred and Qian, Xueqiao and Wang, Weimin}, title = {The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet}, series = {GigaScience}, volume = {6}, journal = {GigaScience}, number = {7}, doi = {10.1093/gigascience/gix039}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170844}, year = {2017}, abstract = {The blunt snout bream Megalobrama amblycephala is the economically most important cyprinid fish species. As an herbivore, it can be grown by eco-friendly and resource-conserving aquaculture. However, the large number of intermuscular bones in the trunk musculature is adverse to fish meat processing and consumption. As a first towards optimizing this aquatic livestock, we present a 1.116-Gb draft genome of M. amblycephala, with 779.54 Mb anchored on 24 linkage groups. Integrating spatiotemporal transcriptome analyses, we show that intermuscular bone is formed in the more basal teleosts by intramembranous ossification and may be involved in muscle contractibility and coordinating cellular events. Comparative analysis revealed that olfactory receptor genes, especially of the beta type, underwent an extensive expansion in herbivorous cyprinids, whereas the gene for the umami receptor T1R1 was specifically lost in M. amblycephala. The composition of gut microflora, which contributes to the herbivorous adaptation of M. amblycephala, was found to be similar to that of other herbivores. As a valuable resource for the improvement of M. amblycephala livestock, the draft genome sequence offers new insights into the development of intermuscular bone and herbivorous adaptation.}, language = {en} } @article{ChenMengLiaoetal.2021, author = {Chen, Xing and Meng, Guoyun and Liao, Guanming and Rauch, Florian and He, Jiang and Friedrich, Alexandra and Marder, Todd B. and Wang, Nan and Chen, Pangkuan and Wang, Suning and Yin, Xiaodong}, title = {Highly Emissive 9-Borafluorene Derivatives: Synthesis, Photophysical Properties and Device Fabrication}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {20}, doi = {10.1002/chem.202005185}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256738}, pages = {6274-6282}, year = {2021}, abstract = {A series of 9-borafluorene derivatives, functionalised with electron-donating groups, have been prepared. Some of these 9-borafluorene compounds exhibit strong yellowish emission in solution and in the solid state with relatively high quantum yields (up to 73.6 \% for FMesB-Cz as a neat film). The results suggest that the highly twisted donor groups suppress charge transfer, but the intrinsic photophysical properties of the 9-borafluorene systems remain. The new compounds showed enhanced stability towards the atmosphere, and exhibited excellent thermal stability, revealing their potential for application in materials science. Organic light-emitting diode (OLED) devices were fabricated with two of the highly emissive compounds, and they exhibited strong yellow-greenish electroluminescence, with a maximum luminance intensity of >22 000 cd m\(^{-2}\). These are the first two examples of 9-borafluorene derivatives being used as light-emitting materials in OLED devices, and they have enabled us to achieve a balance between maintaining their intrinsic properties while improving their stability.}, language = {en} } @article{ZhangZhengZhengetal.2019, author = {Zhang, Yonghong and Zheng, Lanlan and Zheng, Yan and Zhou, Chao and Huang, Ping and Xiao, Xiao and Zhao, Yongheng and Hao, Xincai and Hu, Zhubing and Chen, Qinhua and Li, Hongliang and Wang, Xuanbin and Fukushima, Kenji and Wang, Guodong and Li, Chen}, title = {Assembly and Annotation of a Draft Genome of the Medicinal Plant Polygonum cuspidatum}, series = {Frontiers in Plant Science}, volume = {10}, journal = {Frontiers in Plant Science}, issn = {1664-462X}, doi = {10.3389/fpls.2019.01274}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189279}, pages = {1274}, year = {2019}, abstract = {Polygonum cuspidatum (Japanese knotweed, also known as Huzhang in Chinese), a plant that produces bioactive components such as stilbenes and quinones, has long been recognized as important in traditional Chinese herbal medicine. To better understand the biological features of this plant and to gain genetic insight into the biosynthesis of its natural products, we assembled a draft genome of P. cuspidatum using Illumina sequencing technology. The draft genome is ca. 2.56 Gb long, with 71.54\% of the genome annotated as transposable elements. Integrated gene prediction suggested that the P. cuspidatum genome encodes 55,075 functional genes, including 6,776 gene families that are conserved in the five eudicot species examined and 2,386 that are unique to P. cuspidatum. Among the functional genes identified, 4,753 are predicted to encode transcription factors. We traced the gene duplication history of P. cuspidatum and determined that it has undergone two whole-genome duplication events about 65 and 6.6 million years ago. Roots are considered the primary medicinal tissue, and transcriptome analysis identified 2,173 genes that were expressed at higher levels in roots compared to aboveground tissues. Detailed phylogenetic analysis demonstrated expansion of the gene family encoding stilbene synthase and chalcone synthase enzymes in the phenylpropanoid metabolic pathway, which is associated with the biosynthesis of resveratrol, a pharmacologically important stilbene. Analysis of the draft genome identified 7 abscisic acid and water deficit stress-induced protein-coding genes and 14 cysteine-rich transmembrane module genes predicted to be involved in stress responses. The draft de novo genome assembly produced in this study represents a valuable resource for the molecular characterization of medicinal compounds in P. cuspidatum, the improvement of this important medicinal plant, and the exploration of its abiotic stress resistance.}, language = {en} } @article{ZhaoYuHuetal.2015, author = {Zhao, De-Wei and Yu, Mang and Hu, Kai and Wang, Wei and Yang, Lei and Wang, Ben-Jie and Gao, Xiao-Hong and Guo, Yong-Ming and Xu, Yong-Qing and Wei, Yu-Shan and Tian, Si-Miao and Yang, Fan and Wang, Nan and Huang, Shi-Bo and Xie, Hui and Wei, Xiao-Wei and Jiang, Hai-Shen and Zang, Yu-Qiang and Ai, Jun and Chen, Yuan-Liang and Lei, Guang-Hua and Li, Yu-Jin and Tian, Geng and Li, Zong-Sheng and Cao, Yong and Ma, Li}, title = {Prevalence of Nontraumatic Osteonecrosis of the Femoral Head and its Associated Risk Factors in the Chinese Population: Results from a Nationally Representative Survey}, series = {Chinese Medical Journal}, volume = {128}, journal = {Chinese Medical Journal}, number = {21}, doi = {10.4103/0366-6999.168017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138482}, pages = {2843-2850}, year = {2015}, abstract = {Background: Nontraumatic osteonecrosis of the femoral head (NONFH) is a debilitating disease that represents a significant financial burden for both individuals and healthcare systems. Despite its significance, however, its prevalence in the Chinese general population remains unknown. This study aimed to investigate the prevalence of NONFH and its associated risk factors in the Chinese population. Methods: A nationally representative survey of 30,030 respondents was undertaken from June 2012 to August 2013. All participants underwent a questionnaire investigation, physical examination of hip, and bilateral hip joint X-ray and/or magnetic resonance imaging examination. Blood samples were taken after overnight fasting to test serum total cholesterol, triglyceride, and high-density lipoprotein (HDL) and low-density lipoprotein (LDL) levels. We then used multivariate logistic regression analysis to investigate the associations between various metabolic, demographic, and lifestyle-related variables and NONFH. Results: NONFH was diagnosed in 218 subjects (0.725\%) and the estimated NONFH cases were 8.12 million among Chinese people aged 15 years and over. The prevalence of NONFH was significantly higher in males than in females (1.02\% vs. 0.51\%, \(\chi^2\) = 24.997, P < 0.001). Among NONFH patients, North residents were subjected to higher prevalence of NONFH than that of South residents (0.85\% vs. 0.61\%, \(\chi^2\) = 5.847, P = 0.016). Our multivariate regression analysis showed that high blood levels of triglycerides, total cholesterol, LDL-cholesterol, and non-HDL-cholesterol, male, urban residence, family history of osteonecrosis of the femoral head, heavy smoking, alcohol abuse and glucocorticoid intake, overweight, and obesity were all significantly associated with an increased risk of NONFH. Conclusions: Our findings highlight that NONFH is a significant public health challenge in China and underscore the need for policy measures on the national level. Furthermore, NONFH shares a number of risk factors with atherosclerosis.}, language = {en} } @article{CouchWangMcGuffogetal.2013, author = {Couch, Fergus J. and Wang, Xianshu and McGuffog, Lesley and Lee, Andrew and Olswold, Curtis and Kuchenbaecker, Karoline B. and Soucy, Penny and Fredericksen, Zachary and Barrowdale, Daniel and Dennis, Joe and Gaudet, Mia M. and Dicks, Ed and Kosel, Matthew and Healey, Sue and Sinilnikova, Olga M. and Lee, Adam and Bacot, Fran{\c{c}}ios and Vincent, Daniel and Hogervorst, Frans B. L. and Peock, Susan and Stoppa-Lyonnet, Dominique and Jakubowska, Anna and Radice, Paolo and Schmutzler, Rita Katharina and Domchek, Susan M. and Piedmonte, Marion and Singer, Christian F. and Friedman, Eitan and Thomassen, Mads and Hansen, Thomas V. O. and Neuhausen, Susan L. and Szabo, Csilla I. and Blanco, Ingnacio and Greene, Mark H. and Karlan, Beth Y. and Garber, Judy and Phelan, Catherine M. and Weitzel, Jeffrey N. and Montagna, Marco and Olah, Edith and Andrulis, Irene L. and Godwin, Andrew K. and Yannoukakos, Drakoulis and Goldgar, David E. and Caldes, Trinidad and Nevanlinna, Heli and Osorio, Ana and Terry, Mary Beth and Daly, Mary B. and van Rensburg, Elisabeth J. and Hamann, Ute and Ramus, Susan J. and Toland, Amanda Ewart and Caligo, Maria A. and Olopade, Olufunmilayo I. and Tung, Nadine and Claes, Kathleen and Beattie, Mary S. and Southey, Melissa C. and Imyanitov, Evgeny N. and Tischkowitz, Marc and Janavicius, Ramunas and John, Esther M. and Kwong, Ava and Diez, Orland and Kwong, Ava and Balma{\~n}a, Judith and Barkardottir, Rosa B. and Arun, Banu K. and Rennert, Gad and Teo, Soo-Hwang and Ganz, Patricia A. and Campbell, Ian and van der Hout, Annemarie H. and van Deurzen, Carolien H. M. and Seynaeve, Caroline and Garcia, Encarna B. G{\´o}mez and van Leeuwen, Flora E. and Meijers-Heijboer, Hanne E. J. and Gille, Johannes J. P. and Ausems, Magreet G. E. M. and Blok, Marinus J. and Ligtenberg, Marjolinjin J. L. and Rookus, Matti A. and Devilee, Peter and Verhoef, Senno and van Os, Theo A. M. and Wijnen, Juul T. and Frost, Debra and Ellis, Steve and Fineberg, Elena and Platte, Radke and Evans, D. Gareth and Izatt, Luise and Eeles, Rosalind A. and Adlard, Julian and Eccles, Diana M. and Cook, Jackie and Brewer, Carole and Douglas, Fiona and Hodgson, Shirley and Morrison, Patrick J. and Side, Lucy E. and Donaldson, Alan and Houghton, Catherine and Rogers, Mark T. and Dorkins, Huw and Eason, Jacqueline and Gregory, Helen and McCann, Emma and Murray, Alex and Calender, Alain and Hardouin, Agn{\`e}s and Berthet, Pascaline and Delnatte, Capucine and Nogues, Catherine and Lasset, Christine and Houdayer, Claude and Leroux,, Dominique and Rouleau, Etienne and Prieur, Fabienne and Damiola, Francesca and Sobol, Hagay and Coupier, Isabelle and Venat-Bouvet, Laurence and Castera, Laurent and Gauthier-Villars, Marion and L{\´e}on{\´e}, M{\´e}lanie and Pujol, Pascal and Mazoyer, Sylvie and Bignon, Yves-Jean and Zlowocka-Perlowska, Elzbieta and Gronwald, Jacek and Lubinski,, Jan and Durda, Katarzyna and Jaworska, Katarzyna and Huzarski, Tomasz and Spurdle, Amanda B. and Viel, Alessandra and Peissel, Bernhard and Bonanni, Bernardo and Melloni, Guilia and Ottini, Laura and Papi, Laura and Varesco, Liliana and Tibiletti, Maria Grazia and Peterlongo, Paolo and Volorio, Sara and Manoukian, Siranoush and Pensotti, Valeria and Arnold, Norbert and Engel, Christoph and Deissler, Helmut and Gadzicki, Dorothea and Gehrig, Andrea and Kast, Karin and Rhiem, Kerstin and Meindl, Alfons and Niederacher, Dieter and Ditsch, Nina and Plendl, Hansjoerg and Preisler-Adams, Sabine and Engert, Stefanie and Sutter, Christian and Varon-Mateeva, Raymenda and Wappenschmidt, Barbara and Weber, Bernhard H. F. and Arver, Brita and Stenmark-Askmalm, Marie and Loman, Niklas and Rosenquist, Richard and Einbeigi, Zakaria and Nathanson, Katherine L. and Rebbeck, Timothy R. and Blank, Stephanie V. and Cohn, David E. and Rodriguez, Gustavo C. and Small, Laurie and Friedlander, Michael and Bae-Jump, Victoria L. and Fink-Retter, Anneliese and Rappaport, Christine and Gschwantler-Kaulich, Daphne and Pfeiler, Georg and Tea, Muy-Kheng and Lindor, Noralane M. and Kaufman, Bella and Paluch, Shani Shimon and Laitman, Yael and Skytte, Anne-Bine and Gerdes, Anne-Marie and Pedersen, Inge Sokilde and Moeller, Sanne Traasdahl and Kruse, Torben A. and Jensen, Uffe Birk and Vijai, Joseph and Sarrel, Kara and Robson, Mark and Kauff, Noah and Mulligan, Anna Marie and Glendon, Gord and Ozcelik, Hilmi and Ejlertsen, Bent and Nielsen, Finn C. and J{\o}nson, Lars and Andersen, Mette K. and Ding, Yuan Chun and Steele, Linda and Foretova, Lenka and Teul{\´e}, Alex and Lazaro, Conxi and Brunet, Joan and Pujana, Miquel Angel and Mai, Phuong L. and Loud, Jennifer T. and Walsh, Christine and Lester, Jenny and Orsulic, Sandra and Narod, Steven A. and Herzog, Josef and Sand, Sharon R. and Tognazzo, Silvia and Agata, Simona and Vaszko, Tibor and Weaver, Joellen and Stravropoulou, Alexandra V. and Buys, Saundra S. and Romero, Atocha and de la Hoya, Miguel and Aittom{\"a}ki, Kristiina and Muranen, Taru A. and Duran, Mercedes and Chung, Wendy K. and Lasa, Adriana and Dorfling, Cecilia M. and Miron, Alexander and Benitez, Javier and Senter, Leigha and Huo, Dezheng and Chan, Salina B. and Sokolenko, Anna P. and Chiquette, Jocelyne and Tihomirova, Laima and Friebel, Tara M. and Agnarsson, Bjarne A. and Lu, Karen H. and Lejbkowicz, Flavio and James, Paul A. and Hall, Per and Dunning, Alison M. and Tessier, Daniel and Cunningham, Julie and Slager, Susan L. and Chen, Wang and Hart, Steven and Stevens, Kristen and Simard, Jacques and Pastinen, Tomi and Pankratz, Vernon S. and Offit, Kenneth and Easton, Douglas F. and Chenevix-Trench, Georgia and Antoniou, Antonis C.}, title = {Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk}, series = {PLOS Genetics}, volume = {9}, journal = {PLOS Genetics}, number = {3}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127947}, pages = {e1003212}, year = {2013}, abstract = {BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 x 10(-8), HR = 1.14, 95\% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 x 10(-8), HR = 1.27, 95\% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4 x 10(-8), HR = 1.20, 95\% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2 x 10(-4)). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5\% of BRCA1 carriers at lowest risk are 28\%-50\% compared to 81\%-100\% for the 5\% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5\% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28\% or lower, whereas the 5\% at highest risk will have a risk of 63\% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.}, language = {en} } @article{YanHongChenetal.2013, author = {Yan, Yan and Hong, Ni and Chen, Tiansheng and Li, Mingyou and Wang, Tiansu and Guan, Guijun and Qiao, Yongkang and Chen, Songlin and Schartl, Manfred and Li, Chang-Ming and Hong, Yunhan}, title = {p53 Gene Targeting by Homologous Recombination in Fish ES Cells}, series = {PLoS One}, volume = {8}, journal = {PLoS One}, number = {3}, doi = {10.1371/journal.pone.0059400}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133416}, pages = {e59400}, year = {2013}, abstract = {Background: Gene targeting (GT) provides a powerful tool for the generation of precise genetic alterations in embryonic stem (ES) cells to elucidate gene function and create animal models for human diseases. This technology has, however, been limited to mouse and rat. We have previously established ES cell lines and procedures for gene transfer and selection for homologous recombination (HR) events in the fish medaka (Oryzias latipes). Methodology and Principal Findings: Here we report HR-mediated GT in this organism. We designed a GT vector to disrupt the tumor suppressor gene p53 (also known as tp53). We show that all the three medaka ES cell lines, MES1 similar to MES3, are highly proficient for HR, as they produced detectable HR without drug selection. Furthermore, the positive-negative selection (PNS) procedure enhanced HR by similar to 12 folds. Out of 39 PNS-resistant colonies analyzed, 19 (48.7\%) were positive for GT by PCR genotyping. When 11 of the PCR-positive colonies were further analyzed, 6 (54.5\%) were found to be bona fide homologous recombinants by Southern blot analysis, sequencing and fluorescent in situ hybridization. This produces a high efficiency of up to 26.6\% for p53 GT under PNS conditions. We show that p53 disruption and long-term propagation under drug selection conditions do not compromise the pluripotency, as p53-targeted ES cells retained stable growth, undifferentiated phenotype, pluripotency gene expression profile and differentiation potential in vitro and in vivo. Conclusions: Our results demonstrate that medaka ES cells are proficient for HR-mediated GT, offering a first model organism of lower vertebrates towards the development of full ES cell-based GT technology.}, language = {en} } @article{JiangOronClarketal.2016, author = {Jiang, Yuxiang and Oron, Tal Ronnen and Clark, Wyatt T. and Bankapur, Asma R. and D'Andrea, Daniel and Lepore, Rosalba and Funk, Christopher S. and Kahanda, Indika and Verspoor, Karin M. and Ben-Hur, Asa and Koo, Da Chen Emily and Penfold-Brown, Duncan and Shasha, Dennis and Youngs, Noah and Bonneau, Richard and Lin, Alexandra and Sahraeian, Sayed M. E. and Martelli, Pier Luigi and Profiti, Giuseppe and Casadio, Rita and Cao, Renzhi and Zhong, Zhaolong and Cheng, Jianlin and Altenhoff, Adrian and Skunca, Nives and Dessimoz, Christophe and Dogan, Tunca and Hakala, Kai and Kaewphan, Suwisa and Mehryary, Farrokh and Salakoski, Tapio and Ginter, Filip and Fang, Hai and Smithers, Ben and Oates, Matt and Gough, Julian and T{\"o}r{\"o}nen, Petri and Koskinen, Patrik and Holm, Liisa and Chen, Ching-Tai and Hsu, Wen-Lian and Bryson, Kevin and Cozzetto, Domenico and Minneci, Federico and Jones, David T. and Chapman, Samuel and BKC, Dukka and Khan, Ishita K. and Kihara, Daisuke and Ofer, Dan and Rappoport, Nadav and Stern, Amos and Cibrian-Uhalte, Elena and Denny, Paul and Foulger, Rebecca E. and Hieta, Reija and Legge, Duncan and Lovering, Ruth C. and Magrane, Michele and Melidoni, Anna N. and Mutowo-Meullenet, Prudence and Pichler, Klemens and Shypitsyna, Aleksandra and Li, Biao and Zakeri, Pooya and ElShal, Sarah and Tranchevent, L{\´e}on-Charles and Das, Sayoni and Dawson, Natalie L. and Lee, David and Lees, Jonathan G. and Sillitoe, Ian and Bhat, Prajwal and Nepusz, Tam{\´a}s and Romero, Alfonso E. and Sasidharan, Rajkumar and Yang, Haixuan and Paccanaro, Alberto and Gillis, Jesse and Sede{\~n}o-Cort{\´e}s, Adriana E. and Pavlidis, Paul and Feng, Shou and Cejuela, Juan M. and Goldberg, Tatyana and Hamp, Tobias and Richter, Lothar and Salamov, Asaf and Gabaldon, Toni and Marcet-Houben, Marina and Supek, Fran and Gong, Qingtian and Ning, Wei and Zhou, Yuanpeng and Tian, Weidong and Falda, Marco and Fontana, Paolo and Lavezzo, Enrico and Toppo, Stefano and Ferrari, Carlo and Giollo, Manuel and Piovesan, Damiano and Tosatto, Silvio C. E. and del Pozo, Angela and Fern{\´a}ndez, Jos{\´e} M. and Maietta, Paolo and Valencia, Alfonso and Tress, Michael L. and Benso, Alfredo and Di Carlo, Stefano and Politano, Gianfranco and Savino, Alessandro and Rehman, Hafeez Ur and Re, Matteo and Mesiti, Marco and Valentini, Giorgio and Bargsten, Joachim W. and van Dijk, Aalt D. J. and Gemovic, Branislava and Glisic, Sanja and Perovic, Vladmir and Veljkovic, Veljko and Almeida-e-Silva, Danillo C. and Vencio, Ricardo Z. N. and Sharan, Malvika and Vogel, J{\"o}rg and Kansakar, Lakesh and Zhang, Shanshan and Vucetic, Slobodan and Wang, Zheng and Sternberg, Michael J. E. and Wass, Mark N. and Huntley, Rachael P. and Martin, Maria J. and O'Donovan, Claire and Robinson, Peter N. and Moreau, Yves and Tramontano, Anna and Babbitt, Patricia C. and Brenner, Steven E. and Linial, Michal and Orengo, Christine A. and Rost, Burkhard and Greene, Casey S. and Mooney, Sean D. and Friedberg, Iddo and Radivojac, Predrag and Veljkovic, Nevena}, title = {An expanded evaluation of protein function prediction methods shows an improvement in accuracy}, series = {Genome Biology}, volume = {17}, journal = {Genome Biology}, number = {184}, doi = {10.1186/s13059-016-1037-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166293}, year = {2016}, abstract = {Background A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. Results We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. Conclusions The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent.}, language = {en} } @article{AsciertoWorschechYuetal.2011, author = {Ascierto, Maria Libera and Worschech, Andrea and Yu, Zhiya and Adams, Sharon and Reinboth, Jennifer and Chen, Nanhai G and Pos, Zoltan and Roychoudhuri, Rahul and Di Pasquale, Giovanni and Bedognetti, Davide and Uccellini, Lorenzo and Rossano, Fabio and Ascierto, Paolo A and Stroncek, David F and Restifo, Nicholas P and Wang, Ena and Szalay, Aladar A and Marincola, Francesco M}, title = {Permissivity of the NCI-60 cancer cell lines to oncolytic Vaccinia Virus GLV-1h68}, series = {BMC Cancer}, volume = {11}, journal = {BMC Cancer}, number = {451}, doi = {10.1186/1471-2407-11-451}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141503}, pages = {1-14}, year = {2011}, abstract = {Background: Oncolytic viral therapy represents an alternative therapeutic strategy for the treatment of cancer. We previously described GLV-1h68, a modified Vaccinia Virus with exclusive tropism for tumor cells, and we observed a cell line-specific relationship between the ability of GLV-1h68 to replicate in vitro and its ability to colonize and eliminate tumor in vivo. Methods: In the current study we surveyed the in vitro permissivity to GLV-1h68 replication of the NCI-60 panel of cell lines. Selected cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain. In order to identify correlates of permissity to viral infection, we measured transcriptional profiles of the cell lines prior infection. Results: We observed highly heterogeneous permissivity to VACV infection amongst the cell lines. The heterogeneity of permissivity was independent of tissue with the exception of B cell derivation. Cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain and a significant correlation was found suggesting a common permissive phenotype. While no clear transcriptional pattern could be identified as predictor of permissivity to infection, some associations were observed suggesting multifactorial basis permissivity to viral infection. Conclusions: Our findings have implications for the design of oncolytic therapies for cancer and offer insights into the nature of permissivity of tumor cells to viral infection.}, language = {en} } @article{TsaiGrimmChaoetal.2015, author = {Tsai, Yu-Chen and Grimm, Stefan and Chao, Ju-Lan and Wang, Shih-Chin and Hofmeyer, Kerstin and Shen, Jie and Eichinger, Fred and Michalopoulou, Theoni and Yao, Chi-Kuang and Chang, Chih-Hsuan and Lin, Shih-Han and Sun, Y. Henry and Pflugfelder, Gert O.}, title = {Optomotor-blind negatively regulates Drosophila eye development by blocking Jak/STAT signaling}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0120236}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143577}, pages = {e0120236}, year = {2015}, abstract = {Organ formation requires a delicate balance of positive and negative regulators. In Drosophila eye development, wingless (wg) is expressed at the lateral margins of the eye disc and serves to block retinal development. The T-box gene optomotor-blind (omb) is expressed in a similar pattern and is regulated by Wg. Omb mediates part of Wg activity in blocking eye development. Omb exerts its function primarily by blocking cell proliferation. These effects occur predominantly in the ventral margin. Our results suggest that the primary effect of Omb is the blocking of Jak/STAT signaling by repressing transcription of upd which encodes the Jak receptor ligand Unpaired.}, language = {en} } @article{AntoniouKuchenbaeckerSoucyetal.2012, author = {Antoniou, Antonis C. and Kuchenbaecker, Karoline B. and Soucy, Penny and Beesley, Jonathan and Chen, Xiaoqing and McGuffog, Lesley and Lee, Andrew and Barrowdale, Daniel and Healey, Sue and Sinilnikova, Olga M. and Caligo, Maria A. and Loman, Niklas and Harbst, Katja and Lindblom, Annika and Arver, Brita and Rosenquist, Richard and Karlsson, Per and Nathanson, Kate and Domchek, Susan and Rebbeck, Tim and Jakubowska, Anna and Lubinski, Jan and Jaworska, Katarzyna and Durda, Katarzyna and Zlowowcka-Perłowska, Elżbieta and Osorio, Ana and Dur{\´a}n, Mercedes and Andr{\´e}s, Raquel and Ben{\´i}tez, Javier and Hamann, Ute and Hogervorst, Frans B. and van Os, Theo A. and Verhoef, Senno and Meijers-Heijboer, Hanne E. J. and Wijnen, Juul and Garcia, Encarna B. G{\´o}mez and Ligtenberg, Marjolijn J. and Kriege, Mieke and Coll{\´e}e, Margriet and Ausems, Margreet G. E. M. and Oosterwijk, Jan C. and Peock, Susan and Frost, Debra and Ellis, Steve D. and Platte, Radka and Fineberg, Elena and Evans, D. Gareth and Lalloo, Fiona and Jacobs, Chris and Eeles, Ros and Adlard, Julian and Davidson, Rosemarie and Cole, Trevor and Cook, Jackie and Paterson, Joan and Douglas, Fiona and Brewer, Carole and Hodgson, Shirley and Morrison, Patrick J. and Walker, Lisa and Rogers, Mark T. and Donaldson, Alan and Dorkins, Huw and Godwin, Andrew K. and Bove, Betsy and Stoppa-Lyonnet, Dominique and Houdayer, Claude and Buecher, Bruno and de Pauw, Antoine and Mazoyer, Sylvie and Calender, Alain and L{\´e}on{\´e}, M{\´e}lanie and Bressac-de Paillerets, Brigitte and Caron, Olivier and Sobol, Hagay and Frenay, Marc and Prieur, Fabienne and Ferrer, Sandra Fert and Mortemousque, Isabelle and Buys, Saundra and Daly, Mary and Miron, Alexander and Terry, Mary Beth and Hopper, John L. and John, Esther M. and Southey, Melissa and Goldgar, David and Singer, Christian F. and Fink-Retter, Anneliese and Muy-Kheng, Tea and Geschwantler Kaulich, Daphne and Hansen, Thomas V. O. and Nielsen, Finn C. and Barkardottir, Rosa B. and Gaudet, Mia and Kirchhoff, Tomas and Joseph, Vijai and Dutra-Clarke, Ana and Offit, Kenneth and Piedmonte, Marion and Kirk, Judy and Cohn, David and Hurteau, Jean and Byron, John and Fiorica, James and Toland, Amanda E. and Montagna, Marco and Oliani, Cristina and Imyanitov, Evgeny and Isaacs, Claudine and Tihomirova, Laima and Blanco, Ignacio and Lazaro, Conxi and Teul{\´e}, Alex and Del Valle, J. and Gayther, Simon A. and Odunsi, Kunle and Gross, Jenny and Karlan, Beth Y. and Olah, Edith and Teo, Soo-Hwang and Ganz, Patricia A. and Beattie, Mary S. and Dorfling, Cecelia M. and Jansen van Rensburg, Elizabeth and Diez, Orland and Kwong, Ava and Schmutzler, Rita K. and Wappenschmidt, Barbara and Engel, Christoph and Meindl, Alfons and Ditsch, Nina and Arnold, Norbert and Heidemann, Simone and Niederacher, Dieter and Preisler-Adams, Sabine and Gadzicki, Dorothea and Varon-Mateeva, Raymonda and Deissler, Helmut and Gehrig, Andrea and Sutter, Christian and Kast, Karin and Fiebig, Britta and Sch{\"a}fer, Dieter and Caldes, Trinidad and de la Hoya, Miguel and Nevanlinna, Heli and Muranen, Taru A. and Lesp{\´e}rance, Bernard and Spurdle, Amanda B. and Neuhausen, Susan L. and Ding, Yuan C. and Wang, Xianshu and Fredericksen, Zachary and Pankratz, Vernon S. and Lindor, Noralane M. and Peterlongo, Paulo and Manoukian, Siranoush and Peissel, Bernard and Zaffaroni, Daniela and Bonanni, Bernardo and Bernard, Loris and Dolcetti, Riccardo and Papi, Laura and Ottini, Laura and Radice, Paolo and Greene, Mark H. and Loud, Jennifer T. and Andrulis, Irene L. and Ozcelik, Hilmi and Mulligan, Anna Marie and Glendon, Gord and Thomassen, Mads and Gerdes, Anne-Marie and Jensen, Uffe B. and Skytte, Anne-Bine and Kruse, Torben A. and Chenevix-Trench, Georgia and Couch, Fergus J. and Simard, Jacques and Easton, Douglas F.}, title = {Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers}, series = {Breast Cancer Research}, volume = {14}, journal = {Breast Cancer Research}, number = {R33}, organization = {CIMBA; SWE-BRCA; HEBON; EMBRACE; GEMO Study Collaborators; kConFab Investigators}, doi = {10.1186/bcr3121}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130449}, year = {2012}, abstract = {Introduction: Several common alleles have been shown to be associated with breast and/or ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Recent genome-wide association studies of breast cancer have identified eight additional breast cancer susceptibility loci: rs1011970 (9p21, CDKN2A/B), rs10995190 (ZNF365), rs704010 (ZMIZ1), rs2380205 (10p15), rs614367 (11q13), rs1292011 (12q24), rs10771399 (12p11 near PTHLH) and rs865686 (9q31.2). Methods: To evaluate whether these single nucleotide polymorphisms (SNPs) are associated with breast cancer risk for BRCA1 and BRCA2 carriers, we genotyped these SNPs in 12,599 BRCA1 and 7,132 BRCA2 mutation carriers and analysed the associations with breast cancer risk within a retrospective likelihood framework. Results: Only SNP rs10771399 near PTHLH was associated with breast cancer risk for BRCA1 mutation carriers (per-allele hazard ratio (HR) = 0.87, 95\% CI: 0.81 to 0.94, P-trend = 3 x 10\(^{-4}\)). The association was restricted to mutations proven or predicted to lead to absence of protein expression (HR = 0.82, 95\% CI: 0.74 to 0.90, P-trend = 3.1 x 10\(^{-5}\), P-difference = 0.03). Four SNPs were associated with the risk of breast cancer for BRCA2 mutation carriers: rs10995190, P-trend = 0.015; rs1011970, P-trend = 0.048; rs865686, 2df P = 0.007; rs1292011 2df P = 0.03. rs10771399 (PTHLH) was predominantly associated with estrogen receptor (ER)-negative breast cancer for BRCA1 mutation carriers (HR = 0.81, 95\% CI: 0.74 to 0.90, P-trend = 4 x 10\(^{-5}\)) and there was marginal evidence of association with ER- negative breast cancer for BRCA2 mutation carriers (HR = 0.78, 95\% CI: 0.62 to 1.00, P-trend = 0.049). Conclusions: The present findings, in combination with previously identified modifiers of risk, will ultimately lead to more accurate risk prediction and an improved understanding of the disease etiology in BRCA1 and BRCA2 mutation carriers.}, language = {en} } @article{WangChenMinevetal.2012, author = {Wang, Huiqiang and Chen, Nanhai G. and Minev, Boris R. and Szalay, Aladar A.}, title = {Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells}, series = {Journal of Translational Medicine}, volume = {10}, journal = {Journal of Translational Medicine}, number = {167}, doi = {10.1186/1479-5876-10-167}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130019}, year = {2012}, abstract = {Background: Recent data suggest that cancer stem cells (CSCs) play an important role in cancer, as these cells possess enhanced tumor-forming capabilities and are responsible for relapses after apparently curative therapies have been undertaken. Hence, novel cancer therapies will be needed to test for both tumor regression and CSC targeting. The use of oncolytic vaccinia virus (VACV) represents an attractive anti-tumor approach and is currently under evaluation in clinical trials. The purpose of this study was to demonstrate whether VACV does kill CSCs that are resistant to irradiation and chemotherapy. Methods: Cancer stem-like cells were identified and separated from the human breast cancer cell line GI-101A by virtue of increased aldehyde dehydrogenase 1 (ALDH1) activity as assessed by the ALDEFLUOR assay and cancer stem cell-like features such as chemo-resistance, irradiation-resistance and tumor-initiating were confirmed in cell culture and in animal models. VACV treatments were applied to both ALDEFLUOR-positive cells in cell culture and in xenograft tumors derived from these cells. Moreover, we identified and isolated CD44\(^+\)CD24\(^+\)ESA\(^+\) cells from GI-101A upon an epithelial-mesenchymal transition (EMT). These cells were similarly characterized both in cell culture and in animal models. Results: We demonstrated for the first time that the oncolytic VACV GLV-1h68 strain replicated more efficiently in cells with higher ALDH1 activity that possessed stem cell-like features than in cells with lower ALDH1 activity. GLV-1h68 selectively colonized and eventually eradicated xenograft tumors originating from cells with higher ALDH1 activity. Furthermore, GLV-1h68 also showed preferential replication in CD44\(^+\)CD24\(^+\)ESA\(^+\) cells derived from GI-101A upon an EMT induction as well as in xenograft tumors originating from these cells that were more tumorigenic than CD44\(^+\)CD24\(^-\)ESA\(^+\) cells. Conclusions: Taken together, our findings indicate that GLV-1h68 efficiently replicates and kills cancer stem-like cells. Thus, GLV-1h68 may become a promising agent for eradicating both primary and metastatic tumors, especially tumors harboring cancer stem-like cells that are resistant to chemo and/or radiotherapy and may be responsible for recurrence of tumors.}, language = {en} } @article{WangChenMinevetal.2013, author = {Wang, Huiqiang and Chen, Nanhai G. and Minev, Boris R. and Zimmermann, Martina and Aguilar, Richard J. and Zhang, Qian and Sturm, Julia B. and Fend, Falko and Yu, Yong A. and Cappello, Joseph and Lauer, Ulrich M. and Szalay, Aladar A.}, title = {Optical Detection and Virotherapy of Live Metastatic Tumor Cells in Body Fluids with Vaccinia Strains}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {9}, doi = {10.1371/journal.pone.0071105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130059}, pages = {e71105}, year = {2013}, abstract = {Metastatic tumor cells in body fluids are important targets for treatment, and critical surrogate markers for evaluating cancer prognosis and therapeutic response. Here we report, for the first time, that live metastatic tumor cells in blood samples from mice bearing human tumor xenografts and in blood and cerebrospinal fluid samples from patients with cancer were successfully detected using a tumor cell-specific recombinant vaccinia virus (VACV). In contrast to the FDA-approved CellSearch system, VACV detects circulating tumor cells (CTCs) in a cancer biomarker-independent manner, thus, free of any bias related to the use of antibodies, and can be potentially a universal system for detection of live CTCs of any tumor type, not limited to CTCs of epithelial origin. Furthermore, we demonstrate for the first time that VACV was effective in preventing and reducing circulating tumor cells in mice bearing human tumor xenografts. Importantly, a single intra-peritoneal delivery of VACV resulted in a dramatic decline in the number of tumor cells in the ascitic fluid from a patient with gastric cancer. Taken together, these results suggest VACV to be a useful tool for quantitative detection of live tumor cells in liquid biopsies as well as a potentially effective treatment for reducing or eliminating live tumor cells in body fluids of patients with metastatic disease.}, language = {en} } @article{KuzkinaBargarSchmittetal.2021, author = {Kuzkina, Anastasia and Bargar, Connor and Schmitt, Daniela and R{\"o}ßle, Jonas and Wang, Wen and Schubert, Anna-Lena and Tatsuoka, Curtis and Gunzler, Steven A. and Zou, Wen-Quan and Volkmann, Jens and Sommer, Claudia and Doppler, Kathrin and Chen, Shu G.}, title = {Diagnostic value of skin RT-QuIC in Parkinson's disease: a two-laboratory study}, series = {NPJ Parkinson's Disease}, volume = {7}, journal = {NPJ Parkinson's Disease}, number = {1}, doi = {10.1038/s41531-021-00242-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260451}, year = {2021}, abstract = {Skin alpha-synuclein deposition is considered a potential biomarker for Parkinson's disease (PD). Real-time quaking-induced conversion (RT-QuIC) is a novel, ultrasensitive, and efficient seeding assay that enables the detection of minute amounts of alpha-synuclein aggregates. We aimed to determine the diagnostic accuracy, reliability, and reproducibility of alpha-synuclein RT-QuIC assay of skin biopsy for diagnosing PD and to explore its correlation with clinical markers of PD in a two-center inter-laboratory comparison study. Patients with clinically diagnosed PD (n = 34), as well as control subjects (n = 30), underwent skin punch biopsy at multiple sites (neck, lower back, thigh, and lower leg). The skin biopsy samples (198 in total) were divided in half to be analyzed by RT-QuIC assay in two independent laboratories. The a-synuclein RT-QuIC assay of multiple skin biopsies supported the clinical diagnosis of PD with a diagnostic accuracy of 88.9\% and showed a high degree of inter-rater agreement between the two laboratories (92.2\%). Higher alpha-synuclein seeding activity in RT-QuIC was shown in patients with longer disease duration and more advanced disease stage and correlated with the presence of REM sleep behavior disorder, cognitive impairment, and constipation. The alpha-synuclein RT-QuIC assay of minimally invasive skin punch biopsy is a reliable and reproducible biomarker for Parkinson's disease. Moreover, alpha-synuclein RT-QuIC seeding activity in the skin may serve as a potential indicator of progression as it correlates with the disease stage and certain non-motor symptoms.}, language = {en} } @article{BiernackaSangkuhlJenkinsetal.2015, author = {Biernacka, J. M. and Sangkuhl, K. and Jenkins, G. and Whaley, R. M. and Barman, P. and Batzler, A. and Altman, R. B. and Arolt, V. and Brockm{\"o}ller, J. and Chen, C. H. and Domschke, K. and Hall-Flavin, D. K. and Hong, C. J. and Illi, A. and Ji, Y. and Kampman, O. and Kinoshita, T. and Leinonen, E. and Liou, Y. J. and Mushiroda, T. and Nonen, S. and Skime, M. K. and Wang, L. and Baune, B. T. and Kato, M. and Liu, Y. L. and Praphanphoj, V. and Stingl, J. C. and Tsai, S. J. and Kubo, M. and Klein, T. E. and Weinshilboum, R.}, title = {The International SSRI Pharmacogenomics Consortium (ISPC): a genome-wide association study of antidepressant treatment response}, series = {Translational Psychiatry}, volume = {5}, journal = {Translational Psychiatry}, number = {e553}, doi = {10.1038/tp.2015.47}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143223}, year = {2015}, abstract = {Response to treatment with selective serotonin reuptake inhibitors (SSRIs) varies considerably between patients. The International SSRI Pharmacogenomics Consortium (ISPC) was formed with the primary goal of identifying genetic variation that may contribute to response to SSRI treatment of major depressive disorder. A genome-wide association study of 4-week treatment outcomes, measured using the 17-item Hamilton Rating Scale for Depression (HRSD-17), was performed using data from 865 subjects from seven sites. The primary outcomes were percent change in HRSD-17 score and response, defined as at least 50\% reduction in HRSD-17. Data from two prior studies, the Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomics Study (PGRN-AMPS) and the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study, were used for replication, and a meta-analysis of the three studies was performed (N = 2394). Although many top association signals in the ISPC analysis map to interesting candidate genes, none were significant at the genome-wide level and the associations were not replicated using PGRN-AMPS and STAR*D data. Top association results in the meta-analysis of response included single-nucleotide polymorphisms (SNPs) in the HPRTP4 (hypoxanthine phosphoribosyltransferase pseudogene 4)/VSTM5 (V-set and transmembrane domain containing 5) region, which approached genome-wide significance (P = 5.03E - 08) and SNPs 5' upstream of the neuregulin-1 gene, NRG1 (P = 1.20E - 06). NRG1 is involved in many aspects of brain development, including neuronal maturation and variations in this gene have been shown to be associated with increased risk for mental disorders, particularly schizophrenia. Replication and functional studies of these findings are warranted.}, language = {en} } @article{BanksMillardBehnamianetal.2017, author = {Banks, Sarah and Millard, Koreen and Behnamian, Amir and White, Lori and Ullmann, Tobias and Charbonneau, Francois and Chen, Zhaohua and Wang, Huili and Pasher, Jon and Duffe, Jason}, title = {Contributions of actual and simulated satellite SAR data for substrate type differentiation and shoreline mapping in the Canadian Arctic}, series = {Remote Sensing}, volume = {9}, journal = {Remote Sensing}, number = {12}, doi = {10.3390/rs9121206}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172630}, year = {2017}, abstract = {Detailed information on the land cover types present and the horizontal position of the land-water interface is needed for sensitive coastal ecosystems throughout the Arctic, both to establish baselines against which the impacts of climate change can be assessed and to inform response operations in the event of environmental emergencies such as oil spills. Previous work has demonstrated potential for accurate classification via fusion of optical and SAR data, though what contribution either makes to model accuracy is not well established, nor is it clear what shorelines can be classified using optical or SAR data alone. In this research, we evaluate the relative value of quad pol RADARSAT-2 and Landsat 5 data for shoreline mapping by individually excluding both datasets from Random Forest models used to classify images acquired over Nunavut, Canada. In anticipation of the RADARSAT Constellation Mission (RCM), we also simulate and evaluate dual and compact polarimetric imagery for shoreline mapping. Results show that SAR data is needed for accurate discrimination of substrates as user's and producer's accuracies were 5-24\% higher for models constructed with quad pol RADARSAT-2 and DEM data than models constructed with Landsat 5 and DEM data. Models based on simulated RCM and DEM data achieved significantly lower overall accuracies (71-77\%) than models based on quad pol RADARSAT-2 and DEM data (80\%), with Wetland and Tundra being most adversely affected. When classified together with Landsat 5 and DEM data, however, model accuracy was less affected by the SAR data type, with multiple polarizations and modes achieving independent overall accuracies within a range acceptable for operational mapping, at 89-91\%. RCM is expected to contribute positively to ongoing efforts to monitor change and improve emergency preparedness throughout the Arctic.}, language = {en} } @article{ChenWaxmanWangetal.2020, author = {Chen, Si and Waxman, Susannah and Wang, Chao and Atta, Sarah and Loewen, Ralitsa and Loewen, Nils A.}, title = {Dose-dependent effects of netarsudil, a Rho-kinase inhibitor, on the distal outflow tract}, series = {Graefe's Archive for Clinical and Experimental Ophthalmology}, volume = {258}, journal = {Graefe's Archive for Clinical and Experimental Ophthalmology}, issn = {0721-832X}, doi = {10.1007/s00417-020-04691-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231893}, pages = {1211-1216}, year = {2020}, abstract = {Purpose To characterize the effects of netarsudil on the aqueous humor outflow tract distal to the trabecular meshwork (TM). Wehypothesized that netarsudil increases outflow facility in eyes with and without circumferential ab interno trabeculectomy (AIT)that removes the TM. Methods Sixty-four porcine anterior segment cultures were randomly assigned to groups with (n= 32) and without circumferential AIT (n= 32). Cultures were exposed to 0.1, 1, and 10μM netarsudil (N= 8 eyes per concentration). For each concentration,IOP and vessel diameters were compared with their respective pretreatment baselines. Outflow tract vessel diameters wereassessed by spectral-domain optical coherence tomography (SDOCT) and rendered in 4D (XYZ time series). Results Netarsudil at 1μM reduced IOP both in eyes with TM (-0.60 ± 0.24 mmHg,p= 0.01) and in eyes without TM (-1.79 ±0.42 mmHg,p< 0.01). At this concentration, vessels of the distal outflow tract dilated by 72\%. However, at 0.1μMnetarsudilelevated IOP in eyes with TM (1.59 ± 0.36 mmHg,p< 0.001) as well as in eyes without TM (0.23 ± 0.32 mmHg,p<0.001). Vessels of the distal outflow tract constricted by 31\%. Similarly, netarsudil at a concentration of 10μM elevated IOP both in eyeswith TM (1.91 ± 0.193,p< 0.001) and in eyes without TM (3.65 ± 0.86 mmHg,p< 0.001). At this concentration, outflow tractvessels constricted by 27\%. Conclusion In the porcine anterior segment culture, the dose-dependent IOP changes caused by netarsudil matched the diameterchanges of distal outflow tract vessels. Hyper- and hypotensive properties of netarsudil persisted after TM removal}, language = {en} }