@article{EngelRhiemHahnenetal.2018, author = {Engel, Christoph and Rhiem, Kerstin and Hahnen, Eric and Loibl, Sibylle and Weber, Karsten E. and Seiler, Sabine and Zachariae, Silke and Hauke, Jan and Wappenschmidt, Barbara and Waha, Anke and Bl{\"u}mcke, Britta and Kiechle, Marion and Meindl, Alfons and Niederacher, Dieter and Bartram, Claus R. and Speiser, Dorothee and Schlegelberger, Brigitte and Arnold, Norbert and Wieacker, Peter and Leinert, Elena and Gehrig, Andrea and Briest, Susanne and Kast, Karin and Riess, Olaf and Emons, G{\"u}nter and Weber, Bernhard H. F. and Engel, Jutta and Schmutzler, Rita K.}, title = {Prevalence of pathogenic BRCA1/2 germline mutations among 802 women with unilateral triple-negative breast cancer without family cancer history}, series = {BMC Cancer}, volume = {18}, journal = {BMC Cancer}, organization = {German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC)}, doi = {10.1186/s12885-018-4029-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226763}, year = {2018}, abstract = {Background There is no international consensus up to which age women with a diagnosis of triple-negative breast cancer (TNBC) and no family history of breast or ovarian cancer should be offered genetic testing for germline BRCA1 and BRCA2 (gBRCA) mutations. Here, we explored the association of age at TNBC diagnosis with the prevalence of pathogenic gBRCA mutations in this patient group. Methods The study comprised 802 women (median age 40 years, range 19-76) with oestrogen receptor, progesterone receptor, and human epidermal growth factor receptor type 2 negative breast cancers, who had no relatives with breast or ovarian cancer. All women were tested for pathogenic gBRCA mutations. Logistic regression analysis was used to explore the association between age at TNBC diagnosis and the presence of a pathogenic gBRCA mutation. Results A total of 127 women with TNBC(15.8\%) were gBRCA mutation carriers (BRCA1: n = 118, 14.7\%; BRCA2: n = 9, 1. 1\%). The mutation prevalence was 32.9\% in the age group 20-29 years compared to 6.9\% in the age group 60-69 years. Logistic regression analysis revealed a significant increase of mutation frequency with decreasing age at diagnosis (odds ratio 1.87 per 10 year decrease, 95\% CI 1.50-2.32, p < 0.001). gBRCA mutation risk was predicted to be > 10\% for women diagnosed below approximately 50 years. Conclusions Based on the general understanding that a heterozygous mutation probability of 10\% or greater justifies gBRCA mutation screening, women with TNBC diagnosed before the age of 50 years and no familial history of breast and ovarian cancer should be tested for gBRCA mutations. In Germany, this would concern approximately 880 women with newly diagnosed TNBC per year, of whom approximately 150 are expected to be identified as carriers of a pathogenic gBRCA mutation.}, language = {en} } @article{SchmidFalterWeberetal.2017, author = {Schmid, Tobias and Falter, Lena and Weber, Sabine and M{\"u}ller, Nils and Molitor, Konstantin and Zeller, David and Weber-Steffens, Dorothea and Hehlgans, Thomas and Wajant, Harald and Mostb{\"o}ck, Sven and M{\"a}nnel, Daniela N.}, title = {Chronic inflammation increases the sensitivity of mouse Treg for TNFR2 costimulation}, series = {Frontiers in Immunology}, volume = {8}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2017.01471}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173259}, year = {2017}, abstract = {TNF receptor type 2 (TNFR2) has gained attention as a costimulatory receptor for T cells and as critical factor for the development of regulatory T cells (Treg) and myeloid suppressor cells. Using the TNFR2-specific agonist TNCscTNF80, direct effects of TNFR2 activation on myeloid cells and T cells were investigated in mice. \(In\) \(vitro\), TNCscTNF80 induced T cell proliferation in a costimulatory fashion, and also supported \(in\) \(vitro\) expansion of Treg cells. In addition, activation of TNFR2 retarded differentiation of bone marrow-derived immature myeloid cells in culture and reduced their suppressor function. \(In\) \(vivo\) application of TNCscTNF80-induced mild myelopoiesis in na{\"i}ve mice without affecting the immune cell composition. Already a single application expanded Treg cells and improved suppression of CD4 T cells in mice with chronic inflammation. By contrast, multiple applications of the TNFR2 agonist were required to expand Treg cells in na{\"i}ve mice. Improved suppression of T cell proliferation depended on expression of TNFR2 by T cells in mice repeatedly treated with TNCscTNF80, without a major contribution of TNFR2 on myeloid cells. Thus, TNFR2 activation on T cells in na{\"i}ve mice can lead to immune suppression \(in\) \(vivo\). These findings support the important role of TNFR2 for Treg cells in immune regulation.}, language = {en} } @article{KoesslerHermannWeberetal.2016, author = {Koessler, Juergen and Hermann, Stephanie and Weber, Katja and Koessler, Angela and Kuhn, Sabine and Boeck, Markus and Kobsar, Anna}, title = {Role of Purinergic Receptor Expression and Function for Reduced Responsiveness to Adenosine Diphosphate in Washed Human Platelets}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {1}, doi = {10.1371/journal.pone.0147370}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146400}, pages = {e0147370}, year = {2016}, abstract = {Background Washing of platelets is an important procedure commonly used for experimental studies, e.g. in cardiovascular research. As a known phenomenon, responsiveness to adenosine diphosphate (ADP) is reduced in washed platelets, although underlying molecular mechanisms—potentially interfering with experimental results—have not been thoroughly studied. Objectives Since ADP mediates its effects via three purinergic receptors P2Y1, P2X1 and P2Y12, their surface expression and function were investigated in washed platelets and, for comparison, in platelet-rich-plasma (PRP) at different time points for up to 2 hours after preparation. Results In contrast to PRP, flow cytometric analysis of surface expression in washed platelets revealed an increase of all receptors during the first 60 minutes after preparation followed by a significant reduction, which points to an initial preactivation of platelets and consecutive degeneration. The activity of the P2X1 receptor (measured by selectively induced calcium flux) was substantially maintained in both PRP and washed platelets. P2Y12 function (determined by flow cytometry as platelet reactivity index) was partially reduced after platelet washing compared to PRP, but remained stable in course of ongoing storage. However, the function of the P2Y1 receptor (measured by selectively induced calcium flux) continuously declined after preparation of washed platelets. Conclusion In conclusion, decreasing ADP responsiveness in washed platelets is particularly caused by impaired activity of the P2Y1 receptor associated with disturbed calcium regulation, which has to be considered in the design of experimental studies addressing ADP mediated platelet function.}, language = {en} } @article{CouchWangMcGuffogetal.2013, author = {Couch, Fergus J. and Wang, Xianshu and McGuffog, Lesley and Lee, Andrew and Olswold, Curtis and Kuchenbaecker, Karoline B. and Soucy, Penny and Fredericksen, Zachary and Barrowdale, Daniel and Dennis, Joe and Gaudet, Mia M. and Dicks, Ed and Kosel, Matthew and Healey, Sue and Sinilnikova, Olga M. and Lee, Adam and Bacot, Fran{\c{c}}ios and Vincent, Daniel and Hogervorst, Frans B. L. and Peock, Susan and Stoppa-Lyonnet, Dominique and Jakubowska, Anna and Radice, Paolo and Schmutzler, Rita Katharina and Domchek, Susan M. and Piedmonte, Marion and Singer, Christian F. and Friedman, Eitan and Thomassen, Mads and Hansen, Thomas V. O. and Neuhausen, Susan L. and Szabo, Csilla I. and Blanco, Ingnacio and Greene, Mark H. and Karlan, Beth Y. and Garber, Judy and Phelan, Catherine M. and Weitzel, Jeffrey N. and Montagna, Marco and Olah, Edith and Andrulis, Irene L. and Godwin, Andrew K. and Yannoukakos, Drakoulis and Goldgar, David E. and Caldes, Trinidad and Nevanlinna, Heli and Osorio, Ana and Terry, Mary Beth and Daly, Mary B. and van Rensburg, Elisabeth J. and Hamann, Ute and Ramus, Susan J. and Toland, Amanda Ewart and Caligo, Maria A. and Olopade, Olufunmilayo I. and Tung, Nadine and Claes, Kathleen and Beattie, Mary S. and Southey, Melissa C. and Imyanitov, Evgeny N. and Tischkowitz, Marc and Janavicius, Ramunas and John, Esther M. and Kwong, Ava and Diez, Orland and Kwong, Ava and Balma{\~n}a, Judith and Barkardottir, Rosa B. and Arun, Banu K. and Rennert, Gad and Teo, Soo-Hwang and Ganz, Patricia A. and Campbell, Ian and van der Hout, Annemarie H. and van Deurzen, Carolien H. M. and Seynaeve, Caroline and Garcia, Encarna B. G{\´o}mez and van Leeuwen, Flora E. and Meijers-Heijboer, Hanne E. J. and Gille, Johannes J. P. and Ausems, Magreet G. E. M. and Blok, Marinus J. and Ligtenberg, Marjolinjin J. L. and Rookus, Matti A. and Devilee, Peter and Verhoef, Senno and van Os, Theo A. M. and Wijnen, Juul T. and Frost, Debra and Ellis, Steve and Fineberg, Elena and Platte, Radke and Evans, D. Gareth and Izatt, Luise and Eeles, Rosalind A. and Adlard, Julian and Eccles, Diana M. and Cook, Jackie and Brewer, Carole and Douglas, Fiona and Hodgson, Shirley and Morrison, Patrick J. and Side, Lucy E. and Donaldson, Alan and Houghton, Catherine and Rogers, Mark T. and Dorkins, Huw and Eason, Jacqueline and Gregory, Helen and McCann, Emma and Murray, Alex and Calender, Alain and Hardouin, Agn{\`e}s and Berthet, Pascaline and Delnatte, Capucine and Nogues, Catherine and Lasset, Christine and Houdayer, Claude and Leroux,, Dominique and Rouleau, Etienne and Prieur, Fabienne and Damiola, Francesca and Sobol, Hagay and Coupier, Isabelle and Venat-Bouvet, Laurence and Castera, Laurent and Gauthier-Villars, Marion and L{\´e}on{\´e}, M{\´e}lanie and Pujol, Pascal and Mazoyer, Sylvie and Bignon, Yves-Jean and Zlowocka-Perlowska, Elzbieta and Gronwald, Jacek and Lubinski,, Jan and Durda, Katarzyna and Jaworska, Katarzyna and Huzarski, Tomasz and Spurdle, Amanda B. and Viel, Alessandra and Peissel, Bernhard and Bonanni, Bernardo and Melloni, Guilia and Ottini, Laura and Papi, Laura and Varesco, Liliana and Tibiletti, Maria Grazia and Peterlongo, Paolo and Volorio, Sara and Manoukian, Siranoush and Pensotti, Valeria and Arnold, Norbert and Engel, Christoph and Deissler, Helmut and Gadzicki, Dorothea and Gehrig, Andrea and Kast, Karin and Rhiem, Kerstin and Meindl, Alfons and Niederacher, Dieter and Ditsch, Nina and Plendl, Hansjoerg and Preisler-Adams, Sabine and Engert, Stefanie and Sutter, Christian and Varon-Mateeva, Raymenda and Wappenschmidt, Barbara and Weber, Bernhard H. F. and Arver, Brita and Stenmark-Askmalm, Marie and Loman, Niklas and Rosenquist, Richard and Einbeigi, Zakaria and Nathanson, Katherine L. and Rebbeck, Timothy R. and Blank, Stephanie V. and Cohn, David E. and Rodriguez, Gustavo C. and Small, Laurie and Friedlander, Michael and Bae-Jump, Victoria L. and Fink-Retter, Anneliese and Rappaport, Christine and Gschwantler-Kaulich, Daphne and Pfeiler, Georg and Tea, Muy-Kheng and Lindor, Noralane M. and Kaufman, Bella and Paluch, Shani Shimon and Laitman, Yael and Skytte, Anne-Bine and Gerdes, Anne-Marie and Pedersen, Inge Sokilde and Moeller, Sanne Traasdahl and Kruse, Torben A. and Jensen, Uffe Birk and Vijai, Joseph and Sarrel, Kara and Robson, Mark and Kauff, Noah and Mulligan, Anna Marie and Glendon, Gord and Ozcelik, Hilmi and Ejlertsen, Bent and Nielsen, Finn C. and J{\o}nson, Lars and Andersen, Mette K. and Ding, Yuan Chun and Steele, Linda and Foretova, Lenka and Teul{\´e}, Alex and Lazaro, Conxi and Brunet, Joan and Pujana, Miquel Angel and Mai, Phuong L. and Loud, Jennifer T. and Walsh, Christine and Lester, Jenny and Orsulic, Sandra and Narod, Steven A. and Herzog, Josef and Sand, Sharon R. and Tognazzo, Silvia and Agata, Simona and Vaszko, Tibor and Weaver, Joellen and Stravropoulou, Alexandra V. and Buys, Saundra S. and Romero, Atocha and de la Hoya, Miguel and Aittom{\"a}ki, Kristiina and Muranen, Taru A. and Duran, Mercedes and Chung, Wendy K. and Lasa, Adriana and Dorfling, Cecilia M. and Miron, Alexander and Benitez, Javier and Senter, Leigha and Huo, Dezheng and Chan, Salina B. and Sokolenko, Anna P. and Chiquette, Jocelyne and Tihomirova, Laima and Friebel, Tara M. and Agnarsson, Bjarne A. and Lu, Karen H. and Lejbkowicz, Flavio and James, Paul A. and Hall, Per and Dunning, Alison M. and Tessier, Daniel and Cunningham, Julie and Slager, Susan L. and Chen, Wang and Hart, Steven and Stevens, Kristen and Simard, Jacques and Pastinen, Tomi and Pankratz, Vernon S. and Offit, Kenneth and Easton, Douglas F. and Chenevix-Trench, Georgia and Antoniou, Antonis C.}, title = {Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk}, series = {PLOS Genetics}, volume = {9}, journal = {PLOS Genetics}, number = {3}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127947}, pages = {e1003212}, year = {2013}, abstract = {BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 x 10(-8), HR = 1.14, 95\% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 x 10(-8), HR = 1.27, 95\% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4 x 10(-8), HR = 1.20, 95\% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2 x 10(-4)). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5\% of BRCA1 carriers at lowest risk are 28\%-50\% compared to 81\%-100\% for the 5\% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5\% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28\% or lower, whereas the 5\% at highest risk will have a risk of 63\% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.}, language = {en} } @article{NiklausKlinglerWeberetal.2022, author = {Niklaus, Marius and Klingler, Philipp and Weber, Katja and Koessler, Angela and Kuhn, Sabine and Boeck, Markus and Kobsar, Anna and Koessler, Juergen}, title = {Platelet Toll-Like-Receptor-2 and -4 Mediate Different Immune-Related Responses to Bacterial Ligands}, series = {TH Open}, volume = {6}, journal = {TH Open}, number = {3}, doi = {10.1055/a-1827-7365}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301401}, pages = {e156 -- e167}, year = {2022}, abstract = {Background  Like immune cells, platelets express toll-like receptors (TLRs) on their surface membrane. TLR2 and TLR4 are able to recognize bacterial antigens and have the potential to influence hemostatic functions and classical intracellular signaling pathways. This study investigated the role of TLR2 and TLR4 for immune-related functions in human platelets. Materials and Methods  Washed platelets and neutrophils were prepared from fresh human peripheral blood. Basal-, Pam3CSK4- (as TLR2 agonist) and Lipopolysaccharides (LPS; as TLR4 agonist) -induced CD62P expression, fibrinogen binding and TLR2 or TLR4 expression, intracellular reactive oxygen species (ROS) production in H2DCFDA-loaded platelets and uptake of fluorescence-labeled TLR ligands, and fluorophore-conjugated fibrinogen were evaluated by flow cytometry. Analysis of platelet-neutrophil complexes was performed after coincubation of washed platelets and neutrophils in the presence and absence of TLR2 or TLR4 agonists on poly-L-lysine coated surfaces, followed by immunostaining and immunofluorescence imaging. Results  Pam3CSK4 rapidly and transiently increased TLR2 and TLR4 expression. Over the course of 30 minutes after activation with Pam3CSK4 and LPS, the expression of both receptors decreased. Pam3CSK4-stimulated intracellular ROS production and the uptake of TLR ligands or fibrinogen much stronger than LPS. Besides, TLR4 activation led to a significant increase of platelet-neutrophil contacts. Conclusion  Stimulation leads to rapid mobilization of TLR2 or TLR4 to the platelet surface, presumably followed by receptor internalization along with bound TLR ligands. After activation, platelet TLR2 and TLR4 mediate different immune-related reactions. In particular, TLR2 induces intracellular responses in platelets, whereas TLR4 initiates interactions with other immune cells such as neutrophils.}, language = {en} } @article{TanoeyBaechleBrenneretal.2022, author = {Tanoey, Justine and Baechle, Christina and Brenner, Hermann and Deckert, Andreas and Fricke, Julia and G{\"u}nther, Kathrin and Karch, Andr{\´e} and Keil, Thomas and Kluttig, Alexander and Leitzmann, Michael and Mikolajczyk, Rafael and Obi, Nadia and Pischon, Tobias and Schikowski, Tamara and Schipf, Sabine M. and Schulze, Matthias B. and Sedlmeier, Anja and Moreno Vel{\´a}squez, Ilais and Weber, Katharina S. and V{\"o}lzke, Henry and Ahrens, Wolfgang and Gastell, Sylvia and Holleczek, Bernd and J{\"o}ckel, Karl-Heinz and Katzke, Verena and Lieb, Wolfgang and Michels, Karin B. and Schmidt, B{\"o}rge and Teismann, Henning and Becher, Heiko}, title = {Birth order, Caesarean section, or daycare attendance in relation to child- and adult-onset type 1 diabetes: results from the German National Cohort}, series = {International Journal of Environmental Research and Public Health}, volume = {19}, journal = {International Journal of Environmental Research and Public Health}, number = {17}, issn = {1660-4601}, doi = {10.3390/ijerph191710880}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286216}, year = {2022}, abstract = {(1) Background: Global incidence of type 1 diabetes (T1D) is rising and nearly half occurred in adults. However, it is unclear if certain early-life childhood T1D risk factors were also associated with adult-onset T1D. This study aimed to assess associations between birth order, delivery mode or daycare attendance and type 1 diabetes (T1D) risk in a population-based cohort and whether these were similar for childhood- and adult-onset T1D (cut-off age 15); (2) Methods: Data were obtained from the German National Cohort (NAKO Gesundheitsstudie) baseline assessment. Self-reported diabetes was classified as T1D if: diagnosis age ≤ 40 years and has been receiving insulin treatment since less than one year after diagnosis. Cox regression was applied for T1D risk analysis; (3) Results: Analyses included 101,411 participants (100 childhood- and 271 adult-onset T1D cases). Compared to "only-children", HRs for second- or later-born individuals were 0.70 (95\% CI = 0.50-0.96) and 0.65 (95\% CI = 0.45-0.94), respectively, regardless of parental diabetes, migration background, birth year and perinatal factors. In further analyses, higher birth order reduced T1D risk in children and adults born in recent decades. Caesarean section and daycare attendance showed no clear associations with T1D risk; (4) Conclusions: Birth order should be considered in both children and adults' T1D risk assessment for early detection.}, language = {en} }