@article{EdgecockCarettaDavenneetal.2013, author = {Edgecock, T. R. and Caretta, O. and Davenne, T. and Densam, C. and Fitton, M. and Kelliher, D. and Loveridge, P. and Machida, S. and Prior, C. and Rogers, C. and Rooney, M. and Thomason, J. and Wilcox, D. and Wildner, E. and Efthymiopoulos, I. and Garoby, R. and Gilardoni, S. and Hansen, C. and Benedetto, E. and Jensen, E. and Kosmicki, A. and Martini, M. and Osborne, J. and Prior, G. and Stora, T. and Melo Mendonca, T. and Vlachoudis, V. and Waaijer, C. and Cupial, P. and Chanc{\´e}, A. and Longhin, A. and Payet, J. and Zito, M. and Baussan, E. and Bobeth, C. and Bouquerel, E. and Dracos, M. and Gaudiot, G. and Lepers, B. and Osswald, F. and Poussot, P. and Vassilopoulos, N. and Wurtz, J. and Zeter, V. and Bielski, J. and Kozien, M. and Lacny, L. and Skoczen, B. and Szybinski, B. and Ustrycka, A. and Wroblewski, A. and Marie-Jeanne, M. and Balint, P. and Fourel, C. and Giraud, J. and Jacob, J. and Lamy, T. and Latrasse, L. and Sortais, P. and Thuillier, T. and Mitrofanov, S. and Loiselet, M. and Keutgen, Th. and Delbar, Th. and Debray, F. and Trophine, C. and Veys, S. and Daversin, C. and Zorin, V. and Izotov, I. and Skalyga, V. and Burt, G. and Dexter, A. C. and Kravchuk, V. L. and Marchi, T. and Cinausero, M. and Gramegna, F. and De Angelis, G. and Prete, G. and Collazuol, G. and Laveder, M. and Mazzocco, M. and Mezzetto, M. and Signorini, C. and Vardaci, E. and Di Nitto, A. and Brondi, A. and La Rana, G. and Migliozzi, P. and Moro, R. and Palladino, V. and Gelli, N. and Berkovits, D. and Hass, M. and Hirsh, T. Y. and Schuhmann, M. and Stahl, A. and Wehner, J. and Bross, A. and Kopp, J. and Neuffer, D. and Wands, R. and Bayes, R. and Laing, A. and Soler, P. and Agarwalla, S. K. and Cervera Villanueva, A. and Donini, A. and Ghosh, T. and G{\´o}mez Cadenas, J. J. and Hern{\´a}ndez, P. and Mart{\´i}n-Albo, J. and Mena, O. and Burguet-Castell, J. and Agostino, L. and Buizza-Avanzini, M. and Marafini, M. and Patzak, T. and Tonazzo, A. and Duchesneau, D. and Mosca, L. and Bogomilov, M. and Karadzhov, Y. and Matev, R. and Tsenov, R. and Akhmedov, E. and Blennow, M. and Lindner, M. and Schwetz, T. and Fern{\´a}ndez Martinez, E. and Maltoni, M. and Men{\´e}ndez, J. and Giunti, C. and Gonz{\´a}lez Garc{\´i}a, M. C. and Salvado, J. and Coloma, P. and Huber, P. and Li, T. and L{\´o}pez Pav{\´o}n, J. and Orme, C. and Pascoli, S. and Meloni, D. and Tang, J. and Winter, W. and Ohlsson, T. and Zhang, H. and Scotto-Lavina, L. and Terranova, F. and Bonesini, M. and Tortora, L. and Alekou, A. and Aslaninejad, M. and Bontoiu, C. and Kurup, A. and Jenner, L. J. and Long, K. and Pasternak, J. and Pozimski, J. and Back, J. J. and Harrison, P. and Beard, K. and Bogacz, A. and Berg, J. S. and Stratakis, D. and Witte, H. and Snopok, P. and Bliss, N. and Cordwell, M. and Moss, A. and Pattalwar, S. and Apollonio, M.}, title = {High intensity neutrino oscillation facilities in Europe}, series = {Physical Review Special Topics-Accelerators and Beams}, volume = {16}, journal = {Physical Review Special Topics-Accelerators and Beams}, number = {2}, doi = {10.1103/PhysRevSTAB.16.021002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126611}, pages = {21002}, year = {2013}, abstract = {The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Frejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of mu(+) and mu(-) beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He-6 and Ne-18, also stored in a ring. The far detector is also the MEMPHYS detector in the Frejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.}, language = {en} } @article{StoppePatelZarbocketal.2023, author = {Stoppe, Christian and Patel, Jayshil J. and Zarbock, Alex and Lee, Zheng-Yii and Rice, Todd W. and Mafrici, Bruno and Wehner, Rebecca and Chan, Man Hung Manuel and Lai, Peter Chi Keung and MacEachern, Kristen and Myrianthefs, Pavlos and Tsigou, Evdoxia and Ortiz-Reyes, Luis and Jiang, Xuran and Day, Andrew G. and Hasan, M. Shahnaz and Meybohm, Patrick and Ke, Lu and Heyland, Daren K.}, title = {The impact of higher protein dosing on outcomes in critically ill patients with acute kidney injury: a post hoc analysis of the EFFORT protein trial}, series = {Critical Care}, volume = {27}, journal = {Critical Care}, doi = {10.1186/s13054-023-04663-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357221}, year = {2023}, abstract = {Background Based on low-quality evidence, current nutrition guidelines recommend the delivery of high-dose protein in critically ill patients. The EFFORT Protein trial showed that higher protein dose is not associated with improved outcomes, whereas the effects in critically ill patients who developed acute kidney injury (AKI) need further evaluation. The overall aim is to evaluate the effects of high-dose protein in critically ill patients who developed different stages of AKI. Methods In this post hoc analysis of the EFFORT Protein trial, we investigated the effect of high versus usual protein dose (≥ 2.2 vs. ≤ 1.2 g/kg body weight/day) on time-to-discharge alive from the hospital (TTDA) and 60-day mortality and in different subgroups in critically ill patients with AKI as defined by the Kidney Disease Improving Global Outcomes (KDIGO) criteria within 7 days of ICU admission. The associations of protein dose with incidence and duration of kidney replacement therapy (KRT) were also investigated. Results Of the 1329 randomized patients, 312 developed AKI and were included in this analysis (163 in the high and 149 in the usual protein dose group). High protein was associated with a slower time-to-discharge alive from the hospital (TTDA) (hazard ratio 0.5, 95\% CI 0.4-0.8) and higher 60-day mortality (relative risk 1.4 (95\% CI 1.1-1.8). Effect modification was not statistically significant for any subgroup, and no subgroups suggested a beneficial effect of higher protein, although the harmful effect of higher protein target appeared to disappear in patients who received kidney replacement therapy (KRT). Protein dose was not significantly associated with the incidence of AKI and KRT or duration of KRT. Conclusions In critically ill patients with AKI, high protein may be associated with worse outcomes in all AKI stages. Recommendation of higher protein dosing in AKI patients should be carefully re-evaluated to avoid potential harmful effects especially in patients who were not treated with KRT. Trial registration: This study is registered at ClinicalTrials.gov (NCT03160547) on May 17th 2017.}, language = {en} }