@article{VivianiDaenikenSchlatteretal.1980, author = {Viviani, A. and D{\"a}niken, A. von and Schlatter, C. and Lutz, Werner K.}, title = {Effect of selected induction of microsomal and nuclear aryl hydrocarbon monooxygenase and epoxide hydrolase as well as cytoplasmic glutathione S-epoxide transferase on the covalent binding of the carcinogen benzo(a)pyrene to rat liver DNA in vivo}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61114}, year = {1980}, abstract = {Groups of four adult male rats [ZUR:SIV -Z] were pretreated with corn oil (control; 2 ml/kg/day i. p. for 3 days), trans-stilbene-oxide (SO; 200 mg/kg/day i. p. for 2 days), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 10 \(\mu\)g/kg i. p. once, 4 days before killing), phenobarbital (PB; 1 gjliter in the drinking water for 8 days), and dieldrin (20 mg/kg/day i. p. for 3 or 9 days). They received an injection of [G-\(^3\)H]benzo(a)pyrene (BaP, 31 \(\mu\)g/kg, 7.4. 10\(^9\) dpm/kg; i. v.) 16 h before killing. In the liver of each rat, five enzymatic activities and the covalent binding of BaP to DNA have been determined. The rnicrosomal aryl hydrocarbon monooxygenase activity (AHM) ranged frorn 75\% of control (SO) to 356\% (TCDD), the nuclear AHM from 63\% (SO) to 333\% (TCDD). Microsomal epoxide hydrolase activity (EH) was induced up to 238\% (PB), nuclear EH ranged from 86\% (TCDD) to 218\% (PB). A different extent of induction was observed in the two compartments. Highest induction of glutathione S-epoxide transferase activity (GST) was found with PB (202\%). The DNA binding of BaP was modulated within 79\% (dieldrin, 9 days) and 238\% of control (TCDD). An enzyme digest of control DNA was analysed by Sephadex LH-20 chromatography. Multiple linear regression analysis with all data expressedas o/o of control yielded the following equation: DNA Binding = 1.49 · Microsomal AHM- 1.07 · Nuclear AHM+ 0.33 · Microsomal EH- 0.52 · N uclear EH+ 0.11 · Cytoplasmic GST + 58.2. From this analysis it is concluded that (1) AHM located in the endoplasmic reticulum is most important in the formation of DNA-binding metabolites, (2) EH in the same compar.tment is not determinative in thls respect nor has it a protective effect, (3) both membrane-bound enzyme activities located in the nucleus may inactivate potential ultimate carcinogens, and ( 4) cytoplasmic GST probably cannot reduce DNA binding due to its subcellular localization.}, subject = {Toxikologie}, language = {en} } @inproceedings{VivianiLutz1979, author = {Viviani, A. and Lutz, Werner K.}, title = {Modulation of the in vivo covalent binding of the carcinogen benzo(a)pyrene to rat liver DNA by selective induction of microsomal and nuclear aryl hydrocarbon hydroxylase activity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-80132}, year = {1979}, abstract = {The influence of microsomal (mAHH) and nuclear (nAHH) aryl hydrocarbon hydroxylase activity on the covalent binding of t:titiated benzo(a)pyrene to rat liver DNA was evaluated in vivo. Induction ofmAHH was obtained after phenobarbitone treatment (180\% of control), which increased DNA binding to 210\%, but left the nAHH unchanged. mAHH and nAHH were slightly indilced with dieldrin (130\% and 120\%), but the binding remairred unchanged. The increasing effect of mAHlt as weil as the possibly decreasing effect of nAHH induction on the binding became obvious when the data of 11 individual rats were used to solve the equation Binding = aX(mAHH) + bX(nAHH) + c. Multiple linear regression analysis resulted in positive values for a and c, a negative value for b, and a multiple correlation coefficient R = 0.82. An influence of other enzymes involved in the metabolism of benzo(a)pyrene cannot be excluded. The Study shows clearly that the binding of a foreign compound to DNA in vivo is not only dependent on microsomal enzyme activities but also on nuclear activities even if the latter are considerably lower than those of mic'rosomes.}, subject = {DNA}, language = {en} }