@article{GunzShephardLutz1993, author = {Gunz, D. and Shephard, S. E. and Lutz, Werner K.}, title = {Can nongenotoxic carcinogens be detected with the lacI transgenic mouse mutation assay?}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60707}, year = {1993}, abstract = {No abstract available}, subject = {Toxikologie}, language = {en} } @article{LutzSchlatter1992, author = {Lutz, Werner K. and Schlatter, J.}, title = {Chemical carcinogens and overnutrition in diet-related cancer [commentary]}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60712}, year = {1992}, abstract = {The intake of known dietary carclnogens was compiled and the cancer risk was estlmated on the basis of carcinogenic potencies in animals as derived from the Carcinogenic Potency Database by Gold and co-workers. The total cancer risk was compared with the number of cancer cases attributed by epidemiologists to dietary factors (one-third of all cancer cases, i.e. -80 000 per one million Jives). Except for alcohol, the known dietary carcinogens could not account for more than a few bundred cancer cases. Tbis was seen both with tbe DNA-reactive carcinogens (beterocyclic aromatic amines, polycyclic aromatic hydrocarbons, N-nitroso compounds, estragole, aflatoxin B., ethyl carbamate, to name the most important factors) as wen as with those carclnogens wbich have not been shown to react with DNA (e.g. caffelc acid and the carcinogeruc metals arsenic and cadmium). Residues and contaminants turned out to be negligible. Among the various pmsibilities to explain the discrepancy we investigated the roJe of ovemutritlon. Dietary restriction in animals is weil known for its strong reducing effect on spontaneous tumor formation. These data can be used to derive a carcinogenic potency for excess macronutrients: tbe tumor incidence seen with the restrlcted animals is taken as a control value and the increased tumor incidence in the animals fed ad libitum is attributed to the additional feed iotake. For excess standard diet in rats, a carcinogenic potency TD50 of 16 glkg/day was deduced from a recent study. Ovemutrition in Switzerland, estimated to be 5.5 kcallkg/day, was converted to excess food (1.9 g/kg/day) and tbe cancer incidence was calculated. The result, 60 000 cancer cases per one million Jives, is provocatively close to the number of cases not explained by the known dietary chemical carcinogens. Mechanistic studies will be required to test our hypothesis and investigate the role of different types of macronutrients in ovemutrition.}, subject = {Toxikologie}, language = {en} } @article{CantoreggiLutz1992, author = {Cantoreggi, S. and Lutz, Werner K.}, title = {Investigation of the covalent binding of styrene-7,8-oxide to DNA in rat and mouse}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60721}, year = {1992}, abstract = {Styrene-7,8-oxide (SO), the main intennediate metabolite of styrene, induces hyperkeratosis and tumors in the forestomach of rats and mice upon chronic administration by gavage. The aim of this study was to investigate wbether DNA binding could be responsible for the carcinogenic effect observed. [7-\(^3\)H]SO was administered by oral gavage in com oll to male CD rats at two dose levels (1.65 or 240 mg/kg). After 4 or 24 h, forestomach, glandular stomach and Uver were exclsed, DNA was isolated and its radioactivity detennined. At the 4 h time polnt, the DNA radioactivity was below the Iimit of detection in the torestornach and the liver. Expressed in the units of the covalent bindlng Index, CBI = (pmol adduct/mol DNA nucleotide)/(mmol cbemical administeredlkg body wt), the DNA-binding potency was below 2.6 and 2.0 respectively. In the glandular stomach at 4 b, and in most 24 b samples, DNA was slightly radiolabeled. Enzymatic degradation of the DNA and separation by HPLC ofthe normal nucleotides sbowed that the DNA rad.ioactivity represented biosynthetic incorporation of radlolabel into newly synthesized DNA. The Iimit of detection of DNA adducts in the glandular stomach was 1.0. In a second experlment, [7-\(^3\)H]SO was administered by i.p. injection to male 86C3Fl rnice. Liver DNA was analyzed after 2 h. No radloactivity was detectable at a Iimit of detection of CBI < 0.6. In agreement with the relatively long half-life of SO in animals, the cbemical reactivity of SO appears to be too low to result in a detectable production of DNA adducts in an in vivo situation. Upon comparison with the DNA-binding of other carcinogens, a purely genotoxic mechanism of tumorigenJc action of SO is unlikely. The observed tumorigenic potency in the forestomach could be the result of strong tumor promotion by high-dose cytotoxicity foUowed by regenerative hyperplasia.}, subject = {Toxikologie}, language = {en} } @article{HegiSagelsdorffLutz1989, author = {Hegi, M.E. and Sagelsdorff, P. and Lutz, Werner K.}, title = {Detection by \(^{32}\)P-postlabeling of thymidine glycol in gamma-irradiated DNA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60863}, year = {1989}, abstract = {No abstract available}, subject = {Toxikologie}, language = {en} } @article{SagelsdorffLutzSchlatter1988, author = {Sagelsdorff, P. and Lutz, Werner K. and Schlatter, C.}, title = {DNA methylation in rat liver by daminozide, 1,1-dimethylhydrazine, and dimethylnitrosamine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60875}, year = {1988}, abstract = {DNA Methylation in Rat Li ver by Daminozide, 1, 1-Dimethylhydrazine, and Dimethylnitrosamine. SAGELSDORFF, P., LUTZ, W. K., AND ScHLAITER C. (1988). Fundam. Appl. Toxico/. 11, 723-730. [methyP4C]Daminozide (succinic acid 2',2'-dimethylhydrazide; 37 mgjkg), l,l( 14C]dimethylhydrazine (UDMH; 19 mgtkg), and (14C]dimethylnitrosamine (DMNA; 0.1 mg/ kg) were administered by oral gavage to male Sprague-Dawley rats. After 24 hr, the animals were killed and DNA was purified from the livers to constant specific radioactivity. After enzymatic degradation of the DNA to the 3'-deoxynucleotides the Ievel of DNA methylation was determined by HPLC analysis. Radiolabeled 7-methylguanine (7mG) was identified by cochromatography with unlabeled 7mG added as standard after acidic depurination of DNA and HPLC analysis ofpurines and apurinic acid. All three compounds were found to methylate DNA. The relative potencies were 1:47:4900 for daminozide:UDMH:DMNA. With [methyPH]UDMH, the formation of7mG was investigated as a function of dose administered, at 20, 2, and 0.2 mgj kg. The methylation ofDNA was strictly proportional to the dose. The data were used to compare the Ievel of DNA alkylation derived from residues of daminozide and UDMH in treated apple with the genotoxicity of the intake of N-nitroso compounds in Germany and Japan. It is estimated that these residues could Iead to a DNA methylation in the Ii ver of about 6\% of an average exposure to DMNA}, subject = {Toxikologie}, language = {en} } @article{BaertschLutzSchlatter1991, author = {Baertsch, A. and Lutz, Werner K. and Schlatter, C.}, title = {Effect of inhalation exposure regimen on DNA binding potency of 1,2-dichloroethane in the rat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60743}, year = {1991}, abstract = {1 ,2-Dichloroethane (DCE) was reported to be carcinogenic in rats in a long-tenn bioassay using gavage in com oil (24 and 48 mg/kg/day), but not by inhalation (up to 150-250 ppm, 7 h/day, 5 days/week). The daily dose metabolized was similar in the two experiments. In order to address this discrepancy, the genotoxicity of DCE was investigated in vivo under different exposure conditions. Fernale F-344 rats (183-188 g) were exposed to [1,2-14C]DCE in a closed inhalation chamber to either a low, constant concentration (0.3 mg/l = 80 ppm for 4 h) or to a peak concentration (up to 18 mg/1 = 4400 ppm) for a few minutes. After 12 h in the chamber, the dose metabolized under the two conditions was 34 mg/kg and 140 mg/k:g. DNA was isolated from liver and lung and was purified to constant specific radioactivity. DNA was enzymaticaBy hydrolyzed to the 3' -nucleotides which were separated by reverse phase HPLC. Most radioactivity eluted without detectable or with little optical density' indicating that the major part of the DNA radioactivity was due to covalent binding of the test compound. The Ievel of DNA adducts was expressed in the dose-nonnalized units ofthe Covalent Binding Index, CBI = f.Lmol adduct per mol DNA nucleotide/ mmol DCE per kg body wt. In liver DNA, the different exposure regimens resulted in markedly different CBI values of 1.8 and 69, for "constant-low" and ''peak" DCE exposure Ievels. In the Jung, the respective values were 0.9 and 31. It is concluded that the DNA darnage by DCE depends upon the concentration-time profile and that the carcinogenic potency determined in the gavage study should not be used for low-Ievel inhalation exposure.}, subject = {Toxikologie}, language = {en} } @article{OhgakiLudekeMeieretal.1991, author = {Ohgaki, H. and Ludeke, B. I. and Meier, I. and Kleihues, P. and Lutz, Werner K. and Schlatter, C.}, title = {DNA methylation in the digestive tract of F344 rats during chronic exposure to N-methyl-N-nitrosourea}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60759}, year = {1991}, abstract = {The formation of \(O^6\)-methyldeoxyguanosine (\(O^6\)-MedGuo) was determined by an immuno-slot-blot assay in DNA of various tissues of F344 rats exposed to N-methyl-N-nitrosourea (MNU) in the drinking waterat 400 ppm for 2 weeks. Although the pyloric region of the glandular stomach is a target organ under these experimental conditions, the extent of DNA methylation was highest in the forestomach (185 \(\mu\)mol \(O^6\)-MedGuojmol guanine). Fundus (91 J.!moljmol guanine) and pylorus (105 J.!moljmol guanine) of the glandular stomach, oesophagus (124 \(\mu\)mol/mol guanine) and duodenum (109 )lmoljmol guanine) showed lower Ievels of \(O^6\) - MedGuo but differed little between each other. Thus, no correlation was observed between target organ specificity and the extent of DNA methylation. This is in contrast to the gastric carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), which preferentially alkylates DNA of the pylorus, the main site of induction of gastric carcinomas by this chemical. In contrast to MNU, the nonenzymic decomposition of MNNG is accelerated by thiol compounds (reduced glutathione, L-cysteine), which are present at much higher concentrations in the glandular stomach than in the forestomach and oesophagus. During chronic exposure to MNNG (80 ppm), mucosal cells immunoreactive to 0 6-MedGuo are limited to the luminal surface [Kobori et al. (1988) Carcinogenesis 9:2271-2274]. Although MNU (400 ppm) produced similar Ievels of \(O^6\)-MedGuo in the pylorus, no cells containing methylpurines were detectable by immunohistochemistry, suggesting a more uniform methylation of mucosal cells by MNU than by MNNG. After a single oral dose of MNU (90 mg/kg) cells containing methylpurines were unequivocally identified using antibodies to \(O^6\)-MedGuo and the imidazole-ring-opened product of 7-methyldeoxyguanosine. In the gastric fundus, their distribution was similar to those methylated by exposure to MNNG, whereas the pyloric region contained immunoreactive cells also in the deeper mucosallayers. After a 2-week MNU treatment, the rate of cell proliferation, as determined by bromodeoxyuridine immunoreactivity, was only slightly enhanced in the oesophagus andin the fundus, but markedly in the forestomach and the pyloric region of the glandular stomach. lt is concluded that the overall extent of DNA methylation, the distribution of alkylated cells within the mucosa and the proliferative response all contribute to the organ-specific carcinogenicity of MNU.}, subject = {Toxikologie}, language = {en} } @article{Lutz1991, author = {Lutz, Werner K.}, title = {Dose-response relationship for chemical carcinogenesis by genotoxic agents}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60766}, year = {1991}, abstract = {No abstract available}, subject = {Toxikologie}, language = {en} } @article{BussCaviezelLutz1990, author = {Buss, P. and Caviezel, M. and Lutz, Werner K.}, title = {Linear dose-response relationship for DNA adducts in rat liver from chronic exposure to aflatoxin B1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60779}, year = {1990}, abstract = {Male F-344 rats were given eH]aßatoxin B1 (AFB1) in the drinking water at three exposure Ievels (0.02, 0.6, 20 J,Lgll, resulting in average dose Ievels of 2.2, 73, 2110 nglkg per day). After 4, 6 and 8 weeks, DNA was ~ted frorn the livers and analyzed for aßatoxin-DNA adducts. Tbe Ievel of DNA adducts did not increase significantly after 4 weeks, indicating that a steady-state for adduct formation and removal had nearly been reached. At 8 weeks, the adduct Ievels were 0.91, 32 and 850 nucleotide-aßatoxin adducts per to' nucleotides, i.e. clearly proportional to the dose. At the high dose Ievel, a near SO\% tumor incidence would be expected in a 2-year bioassay with F -344 rats while the low dose used is within the range of estlmated human dietary exposures to aßatoxin in W estem countries. The proportionality seen between exposure and steady-state DNA adduct Ievel is discussed with respect to a linear extrapolation of the tumor risk to low dose.}, subject = {Toxikologie}, language = {en} } @article{Lutz1990, author = {Lutz, Werner K.}, title = {Dose-response relationship and low dose extrapolation in chemical carcinogenesis [commentary]}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60789}, year = {1990}, abstract = {Data supporting various dose-respome relationships in chemical carcinogenesis are summarized. General principles are derived to explain the relationships between exposure dose, JI>NA adduct Ievel, induction of genetic changes, and tumor incidence. Some mechanistic aspects of epigenetic carcinogens (stimulation of ceU division and maldlfl'erentlation) are analyzed in a similar way. In a bomogeneous pnpulation, non-linearities are frequent. They are due to pbenomena of induction or saturation of enzymatic activities and to the multi-step nature of carcinog~: if a carcinogen acce1erates more than one step, the SUperposition of the dose- response curves for the indJvidual steps can result in an exponential relationship. A fourth power of the dose was the maximum seen in animals (fonnaldehyde). At the lowest dose Ievels, a proportionality between dose and tumor induction is postulated independent of the mechanism of action if the carcinogen aceeierotes the endogenous proass responsible for spootaneous tumor formation. Low-dose thresholds are expected only for situations where the carcinogen acts in a way that has no endogenous counterpart. Epidemiologfcal studies in humans show linear dose- response curves in all but two investigations. The difference from the strongly nonlinear slopes ·seen in animal studies could be due to the heterogeneity of the human population: if the individual sensitivity to a carcinogen is governed by a large number of genetic and Iife-style factors, the non-linea.rities will tend to cancel each other out and the dose- response curve becomes 'quasi-linear'.}, subject = {Toxikologie}, language = {en} }