@article{Lutz1990, author = {Lutz, Werner K.}, title = {Dose-response relationship and low dose extrapolation in chemical carcinogenesis [commentary]}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60789}, year = {1990}, abstract = {Data supporting various dose-respome relationships in chemical carcinogenesis are summarized. General principles are derived to explain the relationships between exposure dose, JI>NA adduct Ievel, induction of genetic changes, and tumor incidence. Some mechanistic aspects of epigenetic carcinogens (stimulation of ceU division and maldlfl'erentlation) are analyzed in a similar way. In a bomogeneous pnpulation, non-linearities are frequent. They are due to pbenomena of induction or saturation of enzymatic activities and to the multi-step nature of carcinog~: if a carcinogen acce1erates more than one step, the SUperposition of the dose- response curves for the indJvidual steps can result in an exponential relationship. A fourth power of the dose was the maximum seen in animals (fonnaldehyde). At the lowest dose Ievels, a proportionality between dose and tumor induction is postulated independent of the mechanism of action if the carcinogen aceeierotes the endogenous proass responsible for spootaneous tumor formation. Low-dose thresholds are expected only for situations where the carcinogen acts in a way that has no endogenous counterpart. Epidemiologfcal studies in humans show linear dose- response curves in all but two investigations. The difference from the strongly nonlinear slopes ·seen in animal studies could be due to the heterogeneity of the human population: if the individual sensitivity to a carcinogen is governed by a large number of genetic and Iife-style factors, the non-linea.rities will tend to cancel each other out and the dose- response curve becomes 'quasi-linear'.}, subject = {Toxikologie}, language = {en} } @article{OhgakiLudekeMeieretal.1991, author = {Ohgaki, H. and Ludeke, B. I. and Meier, I. and Kleihues, P. and Lutz, Werner K. and Schlatter, C.}, title = {DNA methylation in the digestive tract of F344 rats during chronic exposure to N-methyl-N-nitrosourea}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60759}, year = {1991}, abstract = {The formation of \(O^6\)-methyldeoxyguanosine (\(O^6\)-MedGuo) was determined by an immuno-slot-blot assay in DNA of various tissues of F344 rats exposed to N-methyl-N-nitrosourea (MNU) in the drinking waterat 400 ppm for 2 weeks. Although the pyloric region of the glandular stomach is a target organ under these experimental conditions, the extent of DNA methylation was highest in the forestomach (185 \(\mu\)mol \(O^6\)-MedGuojmol guanine). Fundus (91 J.!moljmol guanine) and pylorus (105 J.!moljmol guanine) of the glandular stomach, oesophagus (124 \(\mu\)mol/mol guanine) and duodenum (109 )lmoljmol guanine) showed lower Ievels of \(O^6\) - MedGuo but differed little between each other. Thus, no correlation was observed between target organ specificity and the extent of DNA methylation. This is in contrast to the gastric carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), which preferentially alkylates DNA of the pylorus, the main site of induction of gastric carcinomas by this chemical. In contrast to MNU, the nonenzymic decomposition of MNNG is accelerated by thiol compounds (reduced glutathione, L-cysteine), which are present at much higher concentrations in the glandular stomach than in the forestomach and oesophagus. During chronic exposure to MNNG (80 ppm), mucosal cells immunoreactive to 0 6-MedGuo are limited to the luminal surface [Kobori et al. (1988) Carcinogenesis 9:2271-2274]. Although MNU (400 ppm) produced similar Ievels of \(O^6\)-MedGuo in the pylorus, no cells containing methylpurines were detectable by immunohistochemistry, suggesting a more uniform methylation of mucosal cells by MNU than by MNNG. After a single oral dose of MNU (90 mg/kg) cells containing methylpurines were unequivocally identified using antibodies to \(O^6\)-MedGuo and the imidazole-ring-opened product of 7-methyldeoxyguanosine. In the gastric fundus, their distribution was similar to those methylated by exposure to MNNG, whereas the pyloric region contained immunoreactive cells also in the deeper mucosallayers. After a 2-week MNU treatment, the rate of cell proliferation, as determined by bromodeoxyuridine immunoreactivity, was only slightly enhanced in the oesophagus andin the fundus, but markedly in the forestomach and the pyloric region of the glandular stomach. lt is concluded that the overall extent of DNA methylation, the distribution of alkylated cells within the mucosa and the proliferative response all contribute to the organ-specific carcinogenicity of MNU.}, subject = {Toxikologie}, language = {en} } @article{SagelsdorffLutzSchlatter1988, author = {Sagelsdorff, P. and Lutz, Werner K. and Schlatter, C.}, title = {DNA methylation in rat liver by daminozide, 1,1-dimethylhydrazine, and dimethylnitrosamine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60875}, year = {1988}, abstract = {DNA Methylation in Rat Li ver by Daminozide, 1, 1-Dimethylhydrazine, and Dimethylnitrosamine. SAGELSDORFF, P., LUTZ, W. K., AND ScHLAITER C. (1988). Fundam. Appl. Toxico/. 11, 723-730. [methyP4C]Daminozide (succinic acid 2',2'-dimethylhydrazide; 37 mgjkg), l,l( 14C]dimethylhydrazine (UDMH; 19 mgtkg), and (14C]dimethylnitrosamine (DMNA; 0.1 mg/ kg) were administered by oral gavage to male Sprague-Dawley rats. After 24 hr, the animals were killed and DNA was purified from the livers to constant specific radioactivity. After enzymatic degradation of the DNA to the 3'-deoxynucleotides the Ievel of DNA methylation was determined by HPLC analysis. Radiolabeled 7-methylguanine (7mG) was identified by cochromatography with unlabeled 7mG added as standard after acidic depurination of DNA and HPLC analysis ofpurines and apurinic acid. All three compounds were found to methylate DNA. The relative potencies were 1:47:4900 for daminozide:UDMH:DMNA. With [methyPH]UDMH, the formation of7mG was investigated as a function of dose administered, at 20, 2, and 0.2 mgj kg. The methylation ofDNA was strictly proportional to the dose. The data were used to compare the Ievel of DNA alkylation derived from residues of daminozide and UDMH in treated apple with the genotoxicity of the intake of N-nitroso compounds in Germany and Japan. It is estimated that these residues could Iead to a DNA methylation in the Ii ver of about 6\% of an average exposure to DMNA}, subject = {Toxikologie}, language = {en} } @incollection{LutzCantoreggiVelic1993, author = {Lutz, Werner K. and Cantoreggi, S. and Velic, I.}, title = {DNA binding and stimulation of cell division in the carcinogenicity of styrene 7,8-oxide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71597}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1993}, abstract = {[7-3H)Styrene 7,8-oxide was administered by oral gavage to male CD rats at a dose of 1.3 mg/kg. After 4 h, the forestomach was excised, DNA was isolated, purified to constant specific radioactivity and degraded nzymatically to the 3 '-nucleotides. Highperformance liquid chromatography fractions with the normal nucleotides contained most of the radiolabel, but a minute level of adduct label was also detccted. Using the units of the covalent binding index (micromoles adduct per mole DNA nucleotide)/(millimole chemical administered per kilogram body weight), a DNA binding potency of 1.0 was derived. A comparison of the covalent binding indices and carcinogenic potencies of other genotoxic forestarnach carcinogens showed that the tumorigenic activity of styrene oxide is unlikely to be purely genotoxic. Therefore, styrene oxide was compared with 3-tbutylhydroxyanisole (BHA) with respect to stimulation of cell proliferation in the forestomach. Male Fischer 344 rats were treated for four weeks at three dose levels of styrene oxide (0, 137, 275 and 550 mg/kg, three times per week by oral gavage) and BHA (0, 0.5, 1 and 2\% in the diet); the highest doses had been reported to result in 84\% and 22\% carcinomas in the forestomach, respectively. Cell proliferation was assessed by incorporation of bromodeoxyuridine into DNA and immunohistochemical analysis. An increase in the lablling indexwas found in a11 treated animals. In the prefundic region of the forestomach, the labeHing index increased significantly, from 42\% (controls) to 54\% with styrene oxide and from 41 to 55\% with BHA. Rats treated with BHA also had severe hyperplastic lesions in the prefundic region, i.e., at the location of BHA-induced forestomach carcinomas. The number of cells per millimetre of section length was increased up to 19 fold. Hyperplastic lesions were not seen with styrene oxide, despite the higher tumour incidence reported with this compound. We conclude that the carcinogenicity of styrene oxide to the forestomach most probably involves a mechanism in which marginal genotoxicity is combined with promotion by increased cell proliferation.}, subject = {Styrol}, language = {en} } @article{FischerBelandLutz1993, author = {Fischer, W. H. and Beland, P. E. and Lutz, Werner K.}, title = {DNA adducts, cell proliferation and papilloma latency time in mouse skin after repeated dermal application of DMBA and TPA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60673}, year = {1993}, abstract = {'lbe mouse skin tumor model was used to investigate whether the Ievel of DNA 8dducts and/or the rate of cell division in the epidermis are indicators of the risk of cancer formation for an individual in an outbred animal popul8tion. A high risk was considered to be reftected by 8 short latency period for the 8ppearance of 8 papilloma. Fernale NMRI mice were treated twice weekly with 2.5 nmol 7 ,12-dimethylbenz[a]antbracene (DMBA) and 3 nmoi12-0-tetradecanoylphorbol-13- 8cetate (TPA) and the appearance of papillomas was registered. The first papilloma 8ppeared after 7.5 weeks. After 17 weeks, when 12 of 14 mice bad 8t least one papilloma, an osmotic minipump deliverlog 5-bromo-2'deoxyuridine (BrdU) was implanted into eacb mouse for 24 h. The mice were killed after 24 h ~d the epidermis was analyzed for D:MBA-nucleotide 8dducts by 32p.postlabeling, for the cell number per unit skin length, and for the labeling index for DNA synthesls. Unexpectedly, D:MBA-nucleotide 8dduct Ievels were highest in those anima1s wbich showed the Iongest latency periods. Adduct Ievels were negatively correlated with the 18beling index, indicating that dilution of adducts by cell division was a predominant factor in determining average adduct concentrations. Individual tumor-latency time was not corTelated with either cell ntunber or labeling index. This could be due to the fact that the measurements only provided 8veraged data and gave no infonnation on the specific situation in clones of premalignant cells. Under the conditions of tbis assay, therefore, neither DNA adduct Ievels nor information on the average kinetics of cell division bad a predidive value for the individual amcer risk withln a group of outbred animals receiving the same treatment}, subject = {Toxikologie}, language = {en} } @article{HegiSagelsdorffLutz1989, author = {Hegi, M.E. and Sagelsdorff, P. and Lutz, Werner K.}, title = {Detection by \(^{32}\)P-postlabeling of thymidine glycol in gamma-irradiated DNA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60863}, year = {1989}, abstract = {No abstract available}, subject = {Toxikologie}, language = {en} } @article{VoglLutzSchoenfelderetal.2015, author = {Vogl, Silvia and Lutz, Roman W. and Sch{\"o}nfelder, Gilbert and Lutz, Werner K.}, title = {CYP2C9 genotype vs. metabolic phenotype for individual drug dosing - a correlation analysis using flurbiprofen as probe drug}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0120403}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148783}, pages = {e0120403}, year = {2015}, abstract = {Currently, genotyping of patients for polymorphic enzymes responsible for metabolic elimination is considered a possibility to adjust drug dose levels. For a patient to profit from this procedure, the interindividual differences in drug metabolism within one genotype should be smaller than those between different genotypes. We studied a large cohort of healthy young adults (283 subjects), correlating their CYP2C9 genotype to a simple phenotyping metric, using flurbiprofen as probe drug. Genotyping was conducted for CYP2C9*1, *2, *3. The urinary metabolic ratio MR (concentration of CYP2C9-dependent metabolite divided by concentration of flurbiprofen) determined two hours after flurbiprofen (8.75 mg) administration served as phenotyping metric. Linear statistical models correlating genotype and phenotype provided highly significant allele-specific MR estimates of 0.596 for the wild type allele CYP2C9*1, 0.405 for CYP2C9*2 (68 \% of wild type), and 0.113 for CYP2C9*3 (19 \% of wild type). If these estimates were used for flurbiprofen dose adjustment, taking 100 \% for genotype *1/*1, an average reduction to 84 \%, 60 \%, 68 \%, 43 \%, and 19\% would result for genotype *1/*2, *1/*3, *2/*2, *2/*3, and *3/*3, respectively. Due to the large individual variation within genotypes with coefficients of variation >= 20\% and supposing the normal distribution, one in three individuals would be out of the average optimum dose by more than 20 \%, one in 20 would be 40\% off. Whether this problem also applies to other CYPs and other drugs has to be investigated case by case. Our data for the given example, however, puts the benefit of individual drug dosing to question, if it is exclusively based on genotype.}, language = {en} } @article{LutzWinklerDunitz1971, author = {Lutz, Werner K. and Winkler, F. K. and Dunitz, J. D.}, title = {Crystal structure of the antibiotic monensin similarities and differences betweeen free acid and metal complex}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61228}, year = {1971}, abstract = {The structure of monensin, C36H620 11 , has been deterrnined by X-ray analysis of its crystalline monohydrate (orthorhombic, a = 15.15, b = 23.61, c = 10.65 A, Z = 4, space group P212121). Phases were assigned by direct methods, malring use of the 'tangent formula'. Although the conformation of the free acid resembles that of the silver salt in being cyclic, there are differences in the hydrogen bonding pattern. These featurcs are discussed in relation to the cornplexation of metal ions by m.onensin.}, subject = {Toxikologie}, language = {en} } @article{CantoreggiLutz1993, author = {Cantoreggi, S. and Lutz, Werner K.}, title = {Covalent binding of styrene to DNA in rat and mouse}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60693}, year = {1993}, abstract = {No abstract available}, subject = {Toxikologie}, language = {en} } @article{JaggiLutzSchlatter1978, author = {Jaggi, W. and Lutz, Werner K. and Schlatter, C.}, title = {Covalent binding of ethinylestradiol and estrone to rat liver DNA in vivo}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61162}, year = {1978}, abstract = {Thecovalent bindingof [6,7-\(^3\)H]ethinylestradiol (EE)and [6,7-\(^3\)H]estrone (E) to liver DNA of 200 g female ratswas measured 8 h after the administration of 80 \(\mu\)g (9.2 mCi) estrogen by gavage. The binding is 1.5 for EE and 1.1 for E, expressedas binding to DNA/dose, in units of \(\mu\)mol hormonefmol DNA phosphate/mmole honnone/kg body wt. It is in the same order of magnitude as for benzene and about 10 000 tim es below the binding of typical liver carcinogens, such as aflatoxin B\(_1\) or N,N-dimethylnitrosamine.}, subject = {Toxikologie}, language = {en} }