@article{ProetelPletschLausekeretal.2014, author = {Proetel, Ulrike and Pletsch, Nadine and Lauseker, Michael and M{\"u}ller, Martin C. and Hanfstein, Benjamin and Krause, Stefan W. and Kalmanti, Lida and Schreiber, Annette and Heim, Dominik and Baerlocher, Gabriela M. and Hofmann, Wolf-Karsten and Lange, Elisabeth and Einsele, Hermann and Wernli, Martin and Kremers, Stephan and Schlag, Rudolf and M{\"u}ller, Lothar and H{\"a}nel, Mathias and Link, Hartmut and Hertenstein, Bernd and Pfirrmann, Markus and Hochhaus, Andreas and Hasford, Joerg and Hehlmann, R{\"u}diger and Saußele, Susanne}, title = {Older patients with chronic myeloid leukemia (≥65 years) profit more from higher imatinib doses than younger patients: a subanalysis of the randomized CML-Study IV}, series = {Annals of Hematology}, volume = {93}, journal = {Annals of Hematology}, number = {7}, issn = {0939-5555}, doi = {10.1007/s00277-014-2041-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121574}, pages = {1167-76}, year = {2014}, abstract = {The impact of imatinib dose on response rates and survival in older patients with chronic myeloid leukemia in chronic phase has not been studied well. We analyzed data from the German CML-Study IV, a randomized five-arm treatment optimization study in newly diagnosed BCR-ABL-positive chronic myeloid leukemia in chronic phase. Patients randomized to imatinib 400 mg/day (IM400) or imatinib 800 mg/day (IM800) and stratified according to age (≥65 years vs. <65 years) were compared regarding dose, response, adverse events, rates of progression, and survival. The full 800 mg dose was given after a 6-week run-in period with imatinib 400 mg/day. The dose could then be reduced according to tolerability. A total of 828 patients were randomized to IM400 or IM800. Seven hundred eighty-four patients were evaluable (IM400, 382; IM800, 402). One hundred ten patients (29 \%) on IM400 and 83 (21 \%) on IM800 were ≥65 years. The median dose per day was lower for patients ≥65 years on IM800, with the highest median dose in the first year (466 mg/day for patients ≥65 years vs. 630 mg/day for patients <65 years). Older patients on IM800 achieved major molecular remission and deep molecular remission as fast as younger patients, in contrast to standard dose imatinib with which older patients achieved remissions much later than younger patients. Grades 3 and 4 adverse events were similar in both age groups. Five-year relative survival for older patients was comparable to that of younger patients. We suggest that the optimal dose for older patients is higher than 400 mg/day. ClinicalTrials.gov identifier: NCT00055874}, language = {en} } @article{WolfAkrapMargetal.2013, author = {Wolf, Annette and Akrap, Nina and Marg, Berenice and Galliardt, Helena and Heiligentag, Martyna and Humpert, Fabian and Sauer, Markus and Kaltschmidt, Barbara and Kaltschmidt, Christian and Seidel, Thorsten}, title = {Elements of Transcriptional Machinery Are Compatible among Plants and Mammals}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0053737}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131203}, pages = {e53737}, year = {2013}, abstract = {In the present work, the objective has been to analyse the compatibility of plant and human transcriptional machinery. The experiments revealed that nuclear import and export are conserved among plants and mammals. Further it has been shown that transactivation of a human promoter occurs by human transcription factor NF-\(\kappa\) B in plant cells, demonstrating that the transcriptional machinery is highly conserved in both kingdoms. Functionality was also seen for regulatory elements of NF-\(\kappa\) B such as its inhibitor I\(\kappa\)B isoform \(\alpha\) that negatively regulated the transactivation activity of the p50/RelA heterodimer by interaction with NF-\(\kappa\)B in plant cells. Nuclear export of RelA could be demonstrated by FRAP-measurements so that RelA shows nucleo-cytoplasmic shuttling as reported for RelA in mammalian cells. The data reveals the high level of compatibility of human transcriptional elements with the plant transcriptional machinery. Thus, Arabidopsis thaliana mesophyll protoplasts might provide a new heterologous expression system for the investigation of the human NF-\(\kappa\)B signaling pathways. The system successfully enabled the controlled manipulation of NF-\(\kappa\)B activity. We suggest the plant protoplast system as a tool for reconstitution and analyses of mammalian pathways and for direct observation of responses to e. g. pharmaceuticals. The major advantage of the system is the absence of interference with endogenous factors that affect and crosstalk with the pathway.}, language = {en} } @article{HudsonNewboldContuetal.2014, author = {Hudson, Lawrence N. and Newbold, Tim and Contu, Sara and Hill, Samantha L. L. and Lysenko, Igor and De Palma, Adriana and Phillips, Helen R. P. and Senior, Rebecca A. and Bennett, Dominic J. and Booth, Hollie and Choimes, Argyrios and Correia, David L. P. and Day, Julie and Echeverria-Londono, Susy and Garon, Morgan and Harrison, Michelle L. K. and Ingram, Daniel J. and Jung, Martin and Kemp, Victoria and Kirkpatrick, Lucinda and Martin, Callum D. and Pan, Yuan and White, Hannah J. and Aben, Job and Abrahamczyk, Stefan and Adum, Gilbert B. and Aguilar-Barquero, Virginia and Aizen, Marcelo and Ancrenaz, Marc and Arbelaez-Cortes, Enrique and Armbrecht, Inge and Azhar, Badrul and Azpiroz, Adrian B. and Baeten, Lander and B{\´a}ldi, Andr{\´a}s and Banks, John E. and Barlow, Jos and Bat{\´a}ry, P{\´e}ter and Bates, Adam J. and Bayne, Erin M. and Beja, Pedro and Berg, Ake and Berry, Nicholas J. and Bicknell, Jake E. and Bihn, Jochen H. and B{\"o}hning-Gaese, Katrin and Boekhout, Teun and Boutin, Celine and Bouyer, Jeremy and Brearley, Francis Q. and Brito, Isabel and Brunet, J{\"o}rg and Buczkowski, Grzegorz and Buscardo, Erika and Cabra-Garcia, Jimmy and Calvino-Cancela, Maria and Cameron, Sydney A. and Cancello, Eliana M. and Carrijo, Tiago F. and Carvalho, Anelena L. and Castro, Helena and Castro-Luna, Alejandro A. and Cerda, Rolando and Cerezo, Alexis and Chauvat, Matthieu and Clarke, Frank M. and Cleary, Daniel F. R. and Connop, Stuart P. and D'Aniello, Biagio and da Silva, Pedro Giovani and Darvill, Ben and Dauber, Jens and Dejean, Alain and Diek{\"o}tter, Tim and Dominguez-Haydar, Yamileth and Dormann, Carsten F. and Dumont, Bertrand and Dures, Simon G. and Dynesius, Mats and Edenius, Lars and Elek, Zolt{\´a}n and Entling, Martin H. and Farwig, Nina and Fayle, Tom M. and Felicioli, Antonio and Felton, Annika M. and Ficetola, Gentile F. and Filgueiras, Bruno K. C. and Fonte, Steve J. and Fraser, Lauchlan H. and Fukuda, Daisuke and Furlani, Dario and Ganzhorn, J{\"o}rg U. and Garden, Jenni G. and Gheler-Costa, Carla and Giordani, Paolo and Giordano, Simonetta and Gottschalk, Marco S. and Goulson, Dave and Gove, Aaron D. and Grogan, James and Hanley, Mick E. and Hanson, Thor and Hashim, Nor R. and Hawes, Joseph E. and H{\´e}bert, Christian and Helden, Alvin J. and Henden, John-Andr{\´e} and Hern{\´a}ndez, Lionel and Herzog, Felix and Higuera-Diaz, Diego and Hilje, Branko and Horgan, Finbarr G. and Horv{\´a}th, Roland and Hylander, Kristoffer and Horv{\´a}th, Roland and Isaacs-Cubides, Paola and Ishitani, Mashiro and Jacobs, Carmen T. and Jaramillo, Victor J. and Jauker, Birgit and Jonsell, Matts and Jung, Thomas S. and Kapoor, Vena and Kati, Vassiliki and Katovai, Eric and Kessler, Michael and Knop, Eva and Kolb, Annette and K{\"o}r{\"o}si, {\`A}d{\´a}m and Lachat, Thibault and Lantschner, Victoria and Le F{\´e}on, Violette and LeBuhn, Gretchen and L{\´e}gar{\´e}, Jean-Philippe and Letcher, Susan G. and Littlewood, Nick A. and L{\´o}pez-Quintero, Carlos A. and Louhaichi, Mounir and L{\"o}vei, Gabor L. and Lucas-Borja, Manuel Esteban and Luja, Victor H. and Maeto, Kaoru and Magura, Tibor and Mallari, Neil Aldrin and Marin-Spiotta, Erika and Marhall, E. J. P. and Mart{\´i}nez, Eliana and Mayfield, Margaret M. and Mikusinski, Gregorz and Milder, Jeffery C. and Miller, James R. and Morales, Carolina L. and Muchane, Mary N. and Muchane, Muchai and Naidoo, Robin and Nakamura, Akihiro and Naoe, Shoji and Nates-Parra, Guiomar and Navarerete Gutierrez, Dario A. and Neuschulz, Eike L. and Noreika, Norbertas and Norfolk, Olivia and Noriega, Jorge Ari and N{\"o}ske, Nicole M. and O'Dea, Niall and Oduro, William and Ofori-Boateng, Caleb and Oke, Chris O. and Osgathorpe, Lynne M. and Paritsis, Juan and Parrah, Alejandro and Pelegrin, Nicol{\´a}s and Peres, Carlos A. and Persson, Anna S. and Petanidou, Theodora and Phalan, Ben and Philips, T. Keith and Poveda, Katja and Power, Eileen F. and Presley, Steven J. and Proen{\c{c}}a, V{\^a}nia and Quaranta, Marino and Quintero, Carolina and Redpath-Downing, Nicola A. and Reid, J. Leighton and Reis, Yana T. and Ribeiro, Danilo B. and Richardson, Barbara A. and Richardson, Michael J. and Robles, Carolina A. and R{\"o}mbke, J{\"o}rg and Romero-Duque, Luz Piedad and Rosselli, Loreta and Rossiter, Stephen J. and Roulston, T'ai H. and Rousseau, Laurent and Sadler, Jonathan P. and S{\´a}fi{\´a}n, Szbolcs and Salda{\~n}a-V{\´a}squez, Romeo A. and Samneg{\aa}rd, Ulrika and Sch{\"u}epp, Christof and Schweiger, Oliver and Sedlock, Jodi L. and Shahabuddin, Ghazala and Sheil, Douglas and Silva, Fernando A. B. and Slade, Eleanor and Smith-Pardo, Allan H. and Sodhi, Navjot S. and Somarriba, Eduardo J. and Sosa, Ram{\´o}n A. and Stout, Jane C. and Struebig, Matthew J. and Sung, Yik-Hei and Threlfall, Caragh G. and Tonietto, Rebecca and T{\´o}thm{\´e}r{\´e}sz, B{\´e}la and Tscharntke, Teja and Turner, Edgar C. and Tylianakis, Jason M. and Vanbergen, Adam J. and Vassilev, Kiril and Verboven, Hans A. F. and Vergara, Carlos H. and Vergara, Pablo M. and Verhulst, Jort and Walker, Tony R. and Wang, Yanping and Watling, James I. and Wells, Konstans and Williams, Christopher D. and Willig, Michael R. and Woinarski, John C. Z. and Wolf, Jan H. D. and Woodcock, Ben A. and Yu, Douglas W. and Zailsev, Andreys and Collen, Ben and Ewers, Rob M. and Mace, Georgina M. and Purves, Drew W. and Scharlemann, J{\"o}rn P. W. and Pervis, Andy}, title = {The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts}, series = {Ecology and Evolution}, volume = {4}, journal = {Ecology and Evolution}, number = {24}, doi = {10.1002/ece3.1303}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114425}, pages = {4701 - 4735}, year = {2014}, abstract = {Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1\% of the total number of all species described, and more than 1\% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - ). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.}, language = {en} } @article{MooijvanWijkBeusenetal.2019, author = {Mooij, Wolf M and van Wijk, Dianneke and Beusen, Arthur HW and Brederveld, Robert J and Chang, Manqi and Cobben, Marleen MP and DeAngelis, Don L and Downing, Andrea S and Green, Pamela and Gsell, Alena S and Huttunen, Inese and Janse, Jan H and Janssen, Annette BG and Hengeveld, Geerten M and Kong, Xiangzhen and Kramer, Lilith and Kuiper, Jan J and Langan, Simon J and Nolet, Bart A and Nuijten, Rascha JM and Strokal, Maryna and Troost, Tineke A and van Dam, Anne A and Teurlincx, Sven}, title = {Modeling water quality in the Anthropocene: directions for the next-generation aquatic ecosystem models}, series = {Current Opinion in Environmental Sustainability}, volume = {36}, journal = {Current Opinion in Environmental Sustainability}, doi = {10.1016/j.cosust.2018.10.012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224173}, pages = {85-95}, year = {2019}, abstract = {"Everything changes and nothing stands still" (Heraclitus). Here we review three major improvements to freshwater aquatic ecosystem models — and ecological models in general — as water quality scenario analysis tools towards a sustainable future. To tackle the rapid and deeply connected dynamics characteristic of the Anthropocene, we argue for the inclusion of eco-evolutionary, novel ecosystem and social-ecological dynamics. These dynamics arise from adaptive responses in organisms and ecosystems to global environmental change and act at different integration levels and different time scales. We provide reasons and means to incorporate each improvement into aquatic ecosystem models. Throughout this study we refer to Lake Victoria as a microcosm of the evolving novel social-ecological systems of the Anthropocene. The Lake Victoria case clearly shows how interlinked eco-evolutionary, novel ecosystem and social-ecological dynamics are, and demonstrates the need for transdisciplinary research approaches towards global sustainability.}, language = {en} }