@article{SchmidSteinleinFeichtingeretal.2014, author = {Schmid, Michael and Steinlein, Claus and Feichtinger, Wolfgang and Haaf, Thomas and Mijares-Urrutia, Abraham and Schargel, Walter E. and Hedges, S. Blair}, title = {Cytogenetic Studies on Gonatodes (Reptilia, Squamata, Sphaerodactylidae)}, series = {Cytogenetic and Genome Research}, volume = {144}, journal = {Cytogenetic and Genome Research}, number = {1}, issn = {1424-8581}, doi = {10.1159/000367929}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196753}, pages = {47-61}, year = {2014}, abstract = {Mitotic and meiotic chromosomes of 5 species of the reptile genus Gonatodes are described by means of conventional staining, banding analyses and in situ hybridization using a synthetic telomeric DNA probe. The amount, location and fluorochrome affinities of constitutive heterochromatin, the number and positions of nucleolus organizer regions, and the patterns of telomeric DNA sequences were determined for most of the species. The karyotypes of G. falconensis and G. taniae from northern Venezuela are distinguished by their extraordinarily reduced diploid chromosome number of 2n = 16, which is the lowest value found so far in reptiles. In contrast to most other reptiles, both species have exclusively large biarmed (meta- and submetacentric) chromosomes. Comparison of the karyotypes of G. falconensis and G. taniae with those of other Gonatodes species indicates that the exceptional 2n = 16 karyotype originated by a series of 8 centric fusions. The karyotypes of G. falconensis and G. taniae are further characterized by the presence of considerable amounts of (TTAGGG)n telomeric sequences in the centromeric regions of all chromosomes. These are probably not only relics of the centric fusion events, but a component of the highly repetitive DNA in the constitutive heterochromatin of the chromosomes. The genome sizes of 4 Gonatodes species were determined using flow cytometry. For comparative purposes, all previously published cytogenetic data on Gonatodes and other sphaerodactylids are included and discussed.}, language = {en} } @article{SchmidSteinleinFeichtingeretal.2014, author = {Schmid, Michael and Steinlein, Claus and Feichtinger, Wolfgang and Bogart, James P.}, title = {Chromosome Banding in Amphibia. XXXI. The Neotropical Anuran Families Centrolenidae and Allophrynidae}, series = {Cytogenetic and Genome Research}, volume = {142}, journal = {Cytogenetic and Genome Research}, number = {4}, issn = {1424-8581}, doi = {10.1159/000362216}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196763}, pages = {268-285}, year = {2014}, abstract = {The mitotic chromosomes of 11 species from the anuran families Centrolenidae and Allophrynidae were analyzed by means of conventional staining, banding techniques, and in situ hybridization. The amount, location, and fluorochrome affinities of constitutive heterochromatin, the number and positions of nucleolus organizer regions, and the patterns of telomeric DNA sequences were determined for most of the species. The karyotypes were found to be highly conserved with a low diploid chromosome number of 2n = 20 and morphologically similar chromosomes. The sister group relationship between the Centrolenidae and Allophrynidae (unranked taxon Allocentroleniae) is clearly corroborated by the cytogenetic data. The existence of heteromorphic XY♂/XX♀ sex chromosomes in an initial stage of morphological differentiation was confirmed in Vitreorana antisthenesi. The genome sizes of 4 centrolenid species were determined using flow cytometry. For completeness and for comparative purposes, all previously published cytogenetic data on centrolenids are included.}, language = {en} } @article{NandaSchartlEpplenetal.1993, author = {Nanda, Indrajit and Schartl, Manfred and Epplen, J{\"o}rg T. and Feichtinger, Wolfgang and Schmid, Michael}, title = {Primitive sex chromosomes in poeciliid fishes harbor simple repetitive DNA sequences}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61659}, year = {1993}, abstract = {The demonstration ofthe chromosomal mode ofsex determinationvia genetic experiments as well as the absence of heteromorphic sex chromosomes affirm poeciliid fishes as a unique group among vertebrates that are endowed with the mostprimitive form of sex chromosornes. In many different taxa the evolutionary process involved in the differentiation ofadvanced sex chromosomes is outlined through sex specifically organized repetitive sequences. In this investigation hydridization of synthetic probes specific to genomic simple repeat motifs uncovers a sex-specific hybridization pattern in certain viviparaus fishes ofthe family Poeciliidae. The hybridization pattern together with specific staining ofthe constitutive heterochromatin by C-banding reveals heterogamety in males (Poecilia reticulata) as weil as in females (P. sphenops). In P. velifera, however, C-banding alone fails to unravel the heterogametic status. The female specific W-chromosome can be detected by simple repetitive sequence probes. Therefore, the principal significance of heterochromatization as a means of generating differentiated sex chromosomes is evident.}, subject = {Physiologische Chemie}, language = {en} } @article{NandaSchartlFeichtingeretal.1992, author = {Nanda, Indrajit and Schartl, Manfred and Feichtinger, Wolfgang and Epplen, J{\"o}rg T. and Schmid, Michael}, title = {Early stages of sex chromosome differentiation in fish as analysed by simple repetitive DNA sequences}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61715}, year = {1992}, abstract = {Animal sex chromosome evolution has started on different occasions with a homologous pair of autosomes leading to morphologically differentiated gonosomes. In contrast to other vertebrate classes, among fishes cytologically dernonstrahle sex chromosomes are rare. In reptiles, certain motifs of simple tandemly repeated DNA sequences like (gata)\(_n\)/(gaca)\(_m\) are associated with the constitutive heterochromatin of sex chromosomes. In this study a panel of simple repetitive sequence probes was hybridized to restriction enzyme digested genomic DNA of poeciliid fishes. Apparent male heterogamety previously established by genetic experiments in Poecilia reticulata (guppy) was correlated with male-specific hybridization using the (GACA)\(_4\) probe. The (GATA)\(_4\) oligonucleotide identifies certain male guppies by a Y chromosomal polymorphism in the outbred population. In cantrast none of the genetically defined heterogametic situations in Xiphophorus could be verified consistently using the collection of simple repetitive sequence probes. Only individuals from particular populations produced sex-specific patterns of hybridization with (GATA)\(_4\). Additional poeciliid species (P. sphenops, P. velifera) harbour different sex-specifically organized simple repeat motifs. The observed sex-specific hybridization patterns were substantiated by banding analyses of the karyotypes and by in situ hybridization using the (GACA)\(_4\) probe.}, subject = {Physiologische Chemie}, language = {en} }