@phdthesis{Borrmann2018, author = {Borrmann, Dorit}, title = {Multi-modal 3D mapping - Combining 3D point clouds with thermal and color information}, isbn = {978-3-945459-20-1}, issn = {1868-7474}, doi = {10.25972/OPUS-15708}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157085}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Imagine a technology that automatically creates a full 3D thermal model of an environment and detects temperature peaks in it. For better orientation in the model it is enhanced with color information. The current state of the art for analyzing temperature related issues is thermal imaging. It is relevant for energy efficiency but also for securing important infrastructure such as power supplies and temperature regulation systems. Monitoring and analysis of the data for a large building is tedious as stable conditions need to be guaranteed for several hours and detailed notes about the pose and the environment conditions for each image must be taken. For some applications repeated measurements are necessary to monitor changes over time. The analysis of the scene is only possible through expertise and experience. This thesis proposes a robotic system that creates a full 3D model of the environment with color and thermal information by combining thermal imaging with the technology of terrestrial laser scanning. The addition of a color camera facilitates the interpretation of the data and allows for other application areas. The data from all sensors collected at different positions is joined in one common reference frame using calibration and scan matching. The first part of the thesis deals with 3D point cloud processing with the emphasis on accessing point cloud data efficiently, detecting planar structures in the data and registering multiple point clouds into one common coordinate system. The second part covers the autonomous exploration and data acquisition with a mobile robot with the objective to minimize the unseen area in 3D space. Furthermore, the combination of different modalities, color images, thermal images and point cloud data through calibration is elaborated. The last part presents applications for the the collected data. Among these are methods to detect the structure of building interiors for reconstruction purposes and subsequent detection and classification of windows. A system to project the gathered thermal information back into the scene is presented as well as methods to improve the color information and to join separately acquired point clouds and photo series. A full multi-modal 3D model contains all the relevant geometric information about the recorded scene and enables an expert to fully analyze it off-site. The technology clears the path for automatically detecting points of interest thereby helping the expert to analyze the heat flow as well as localize and identify heat leaks. The concept is modular and neither limited to achieving energy efficiency nor restricted to the use in combination with a mobile platform. It also finds its application in fields such as archaeology and geology and can be extended by further sensors.}, subject = {Punktwolke}, language = {en} } @phdthesis{SchauerMarinRodrigues2020, author = {Schauer Marin Rodrigues, Johannes}, title = {Detecting Changes and Finding Collisions in 3D Point Clouds : Data Structures and Algorithms for Post-Processing Large Datasets}, isbn = {978-3-945459-32-4}, doi = {10.25972/OPUS-21428}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214285}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Affordable prices for 3D laser range finders and mature software solutions for registering multiple point clouds in a common coordinate system paved the way for new areas of application for 3D point clouds. Nowadays we see 3D laser scanners being used not only by digital surveying experts but also by law enforcement officials, construction workers or archaeologists. Whether the purpose is digitizing factory production lines, preserving historic sites as digital heritage or recording environments for gaming or virtual reality applications -- it is hard to imagine a scenario in which the final point cloud must also contain the points of "moving" objects like factory workers, pedestrians, cars or flocks of birds. For most post-processing tasks, moving objects are undesirable not least because moving objects will appear in scans multiple times or are distorted due to their motion relative to the scanner rotation. The main contributions of this work are two postprocessing steps for already registered 3D point clouds. The first method is a new change detection approach based on a voxel grid which allows partitioning the input points into static and dynamic points using explicit change detection and subsequently remove the latter for a "cleaned" point cloud. The second method uses this cleaned point cloud as input for detecting collisions between points of the environment point cloud and a point cloud of a model that is moved through the scene. Our approach on explicit change detection is compared to the state of the art using multiple datasets including the popular KITTI dataset. We show how our solution achieves similar or better F1-scores than an existing solution while at the same time being faster. To detect collisions we do not produce a mesh but approximate the raw point cloud data by spheres or cylindrical volumes. We show how our data structures allow efficient nearest neighbor queries that make our CPU-only approach comparable to a massively-parallel algorithm running on a GPU. The utilized algorithms and data structures are discussed in detail. All our software is freely available for download under the terms of the GNU General Public license. Most of the datasets used in this thesis are freely available as well. We provide shell scripts that allow one to directly reproduce the quantitative results shown in this thesis for easy verification of our findings.}, subject = {Punktwolke}, language = {en} } @phdthesis{Pfitzner2019, author = {Pfitzner, Christian}, title = {Visual Human Body Weight Estimation with Focus on Clinical Applications}, isbn = {978-3-945459-27-0 (online)}, doi = {10.25972/OPUS-17484}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174842}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {It is the aim of this thesis to present a visual body weight estimation, which is suitable for medical applications. A typical scenario where the estimation of the body weight is essential, is the emergency treatment of stroke patients: In case of an ischemic stroke, the patient has to receive a body weight adapted drug, to solve a blood clot in a vessel. The accuracy of the estimated weight influences the outcome of the therapy directly. However, the treatment has to start as early as possible after the arrival at a trauma room, to provide sufficient treatment. Weighing a patient takes time, and the patient has to be moved. Furthermore, patients are often not able to communicate a value for their body weight due to their stroke symptoms. Therefore, it is state of the art that physicians guess the body weight. A patient receiving a too low dose has an increased risk that the blood clot does not dissolve and brain tissue is permanently damaged. Today, about one-third gets an insufficient dosage. In contrast to that, an overdose can cause bleedings and further complications. Physicians are aware of this issue, but a reliable alternative is missing. The thesis presents state-of-the-art principles and devices for the measurement and estimation of body weight in the context of medical applications. While scales are common and available at a hospital, the process of weighing takes too long and can hardly be integrated into the process of stroke treatment. Sensor systems and algorithms are presented in the section for related work and provide an overview of different approaches. The here presented system -- called Libra3D -- consists of a computer installed in a real trauma room, as well as visual sensors integrated into the ceiling. For the estimation of the body weight, the patient is on a stretcher which is placed in the field of view of the sensors. The three sensors -- two RGB-D and a thermal camera -- are calibrated intrinsically and extrinsically. Also, algorithms for sensor fusion are presented to align the data from all sensors which is the base for a reliable segmentation of the patient. A combination of state-of-the-art image and point cloud algorithms is used to localize the patient on the stretcher. The challenges in the scenario with the patient on the bed is the dynamic environment, including other people or medical devices in the field of view. After the successful segmentation, a set of hand-crafted features is extracted from the patient's point cloud. These features rely on geometric and statistical values and provide a robust input to a subsequent machine learning approach. The final estimation is done with a previously trained artificial neural network. The experiment section offers different configurations of the previously extracted feature vector. Additionally, the here presented approach is compared to state-of-the-art methods; the patient's own assessment, the physician's guess, and an anthropometric estimation. Besides the patient's own estimation, Libra3D outperforms all state-of-the-art estimation methods: 95 percent of all patients are estimated with a relative error of less than 10 percent to ground truth body weight. It takes only a minimal amount of time for the measurement, and the approach can easily be integrated into the treatment of stroke patients, while physicians are not hindered. Furthermore, the section for experiments demonstrates two additional applications: The extracted features can also be used to estimate the body weight of people standing, or even walking in front of a 3D camera. Also, it is possible to determine or classify the BMI of a subject on a stretcher. A potential application for this approach is the reduction of the radiation dose of patients being exposed to X-rays during a CT examination. During the time of this thesis, several data sets were recorded. These data sets contain the ground truth body weight, as well as the data from the sensors. They are available for the collaboration in the field of body weight estimation for medical applications.}, subject = {Punktwolke}, language = {en} } @phdthesis{Bleier2023, author = {Bleier, Michael}, title = {Underwater Laser Scanning - Refractive Calibration, Self-calibration and Mapping for 3D Reconstruction}, isbn = {978-3-945459-45-4}, doi = {10.25972/OPUS-32269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322693}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {There is great interest in affordable, precise and reliable metrology underwater: Archaeologists want to document artifacts in situ with high detail. In marine research, biologists require the tools to monitor coral growth and geologists need recordings to model sediment transport. Furthermore, for offshore construction projects, maintenance and inspection millimeter-accurate measurements of defects and offshore structures are essential. While the process of digitizing individual objects and complete sites on land is well understood and standard methods, such as Structure from Motion or terrestrial laser scanning, are regularly applied, precise underwater surveying with high resolution is still a complex and difficult task. Applying optical scanning techniques in water is challenging due to reduced visibility caused by turbidity and light absorption. However, optical underwater scanners provide significant advantages in terms of achievable resolution and accuracy compared to acoustic systems. This thesis proposes an underwater laser scanning system and the algorithms for creating dense and accurate 3D scans in water. It is based on laser triangulation and the main optical components are an underwater camera and a cross-line laser projector. The prototype is configured with a motorized yaw axis for capturing scans from a tripod. Alternatively, it is mounted to a moving platform for mobile mapping. The main focus lies on the refractive calibration of the underwater camera and laser projector, the image processing and 3D reconstruction. For highest accuracy, the refraction at the individual media interfaces must be taken into account. This is addressed by an optimization-based calibration framework using a physical-geometric camera model derived from an analytical formulation of a ray-tracing projection model. In addition to scanning underwater structures, this work presents the 3D acquisition of semi-submerged structures and the correction of refraction effects. As in-situ calibration in water is complex and time-consuming, the challenge of transferring an in-air scanner calibration to water without re-calibration is investigated, as well as self-calibration techniques for structured light. The system was successfully deployed in various configurations for both static scanning and mobile mapping. An evaluation of the calibration and 3D reconstruction using reference objects and a comparison of free-form surfaces in clear water demonstrate the high accuracy potential in the range of one millimeter to less than one centimeter, depending on the measurement distance. Mobile underwater mapping and motion compensation based on visual-inertial odometry is demonstrated using a new optical underwater scanner based on fringe projection. Continuous registration of individual scans allows the acquisition of 3D models from an underwater vehicle. RGB images captured in parallel are used to create 3D point clouds of underwater scenes in full color. 3D maps are useful to the operator during the remote control of underwater vehicles and provide the building blocks to enable offshore inspection and surveying tasks. The advancing automation of the measurement technology will allow non-experts to use it, significantly reduce acquisition time and increase accuracy, making underwater metrology more cost-effective.}, subject = {Selbstkalibrierung}, language = {en} }