@phdthesis{Boeck2018, author = {B{\"o}ck, Julia}, title = {Differenzielle Methylierungsanalysen mittels verschiedener Next-Generation Sequencing-basierter Techniken: Die Bedeutung von differenziell methylierten Regionen in der menschlichen Hirnevolution und bei der Krebsentstehung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164220}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die Evolution der Primaten zeigt eine Verbindung zwischen der zunehmenden Komplexit{\"a}t des sozialen Verhaltens und der Vergr{\"o}ßerung des humanen Gehirns, insbesondere des pr{\"a}frontalen Cortex. Deshalb stellt der pr{\"a}frontale Cortex bez{\"u}glich der Evolution des Menschen eine der interessantesten Strukturen im humanen Gehirn dar. Es wird angenommen, dass nicht allein die Gr{\"o}ße, sondern auch die Funktion, vor allem das Zusammenspiel von Neuronen und nicht-neuronalen Zellen, wie z.B. Gliazellen, zur Differenzierung des menschlichen Gehirns von dem rezenter Primaten gef{\"u}hrt hat. Daraus l{\"a}sst sich schließen, dass die Gehirnfunktionen {\"u}ber eine ausgeglichene und gut aufeinander abgestimmte transkriptionelle Landschaft kontrolliert werden, die durch ein zugrundeliegendes genetisches und epigentisches R{\"u}ckgrat organisiert ist. In dieser Studie wurden das Methylierungsprofil neuronaler und nicht-neuronaler Zellen des pr{\"a}frontalen Cortex (Brodmann-Areal 10) von drei Menschen und drei Schimpansen miteinander verglichen. Die intra- und interspezifischen differenziell methylierten Regionen (DMRs) waren in bestimmten genomischen Regionen angereichert. Intraspezifische Methylierungsunterschiede zwischen neuronalen und nicht-neuronalen Zellen konnten dreimal h{\"a}ufiger beobachtet werden als interspezifische Unterschiede in den einzelnen Zelltypen. Rund 90\% der humanen intraspezifischen DMRs wiesen eine Hypomethylierung in den neuronalen Zellen im Vergleich zu den nicht-neuronalen Zellen auf. In den intraspezifischen DMRs (Mensch und Schimpanse) waren Gene angereichert, die mit verschiedenen neuropsychiatrischen Erkrankungen assoziiert sind. Der Vergleich zwischen Menschen und Schimpanse in den neuronalen und nicht-neuronalen Zelltypen zeigte eine Anreicherung von Genen mit human-spezifischer Histonsignatur. In den nicht-neuronalen Zellen konnten mehr interspezifische DMRs (n=666) detektiert werden als in den neuronalen Zellen (n=96). Ungef{\"a}hr 95\% der nicht-neuronalen interspezifischen DMRs waren im Menschen, im Vergleich zum Schimpansen, hypermethyliert. Daraus ergibt sich der Eindruck, dass mehrere hundert der nicht-neuronalen Gene w{\"a}hrend der humanen Gehirnevolution einer Methylierungswelle unterlagen. Dies f{\"u}hrt zu der Annahme, dass der Einfluss dieser Ver{\"a}nderungen in den nicht-neuronalen Zellen auf die Verg{\"o}ßerung des menschlichen Gehirns bisher stark untersch{\"a}tzt wurde. Die bekannteste genetische Ursache f{\"u}r erblichen Brust- und Eierstockkrebs sind Mutationen in den Tumorsuppressorgenen (TSG) BRCA1 und BRCA2. Dennoch k{\"o}nnen nur rund 20-25\% der famili{\"a}ren Brustkrebserkrankungen {\"u}ber Keimbahnmutationen in BRCA1/BRCA2 erkl{\"a}rt werden, besonders bei Frauen, deren Erkrankung vor dem vierzigsten Lebensjahr auftritt. Epigenetische Ver{\"a}nderungen, die zu einer aberranten Genexpression f{\"u}hren, spielen ebenfalls eine wichtige Rolle bei der Karzinogenese und der Entwicklung einer Brustkrebserkrankung. Es ist bekannt, dass TSG nicht nur durch den Verlust der Heterozygotie (engl. loss of heterozygosity, LOH) oder homozygote Deletionen, sondern auch durch transkriptionelle Stilllegung via DNA-Methylierung inaktiviert werden k{\"o}nnen. Im Rahmen dieser Arbeit wurde {\"u}berpr{\"u}ft, welchen Einfluss aberrante Methylierungsmuster im Promotorbereich von TSG auf die Brustkrebskarzinogenese und die Expression der Gene haben. F{\"u}r die Quantifizierung der Epimutationen wurden die Promotorbereiche von acht TSG (BRCA1, BRCA2, RAD51C, ATM, PTEN, TP53, MLH1, RB1) und des estrogene receptor (ESR1) Gens, welches eine Rolle in der Tumorprogression spielt, mittels Deep Bisulfite Amplicon Sequencing (DBAS) analysiert. Es wurden Blutproben von zwei unabh{\"a}ngigen BRCA1/BRCA2-mutationsnegativen Brustkrebs (BC)-Patientenkohorten, sowie von zwei unabh{\"a}ngigen alters-gematchten, gesunden Kontrollkohorten untersucht. BC-Kohorte 1 beinhaltet early-onset (EO) BC-Patientinnen. Kohorte 2 enth{\"a}lt BC-Patientinnen mit einem Risiko von >95\% eine heterozygote Mutation in BRCA1/BRCA2 (high-risk, HR) zu tragen. Allele mit >50\% methylierten CpGs werden als funktionell relevante Epimutationen erachtet, da bekannt ist, dass TSG {\"u}ber eine Methylierung im Promotorbereich transkriptionell stillgelegt werden. Im Vergleich zu ESR1 ({\O} Methylierung, 3\%), welches die Methylierungslevel eines durchschnittlichen Promotors wiederspiegelt, zeigten die TSG sehr geringe durchschnittliche Methylierungswerte von weniger als 1\%. Zudem waren die durchschnittlichen Epimutationsraten (EMR; <0,0001-0,1\%) der TSG sehr gering. Mit der Ausnahme von BRCA1, welches eine erh{\"o}hte EMR in der BC-Kohorte verglichen zu den Kontrollen (0,31\% gegen 0,06\%) zeigte, gab es keine signifikanten Gruppenunterschiede zwischen BC-Patientinnen und Kontrollen. Eine von 36 HR BC-Patientinnen zeigte im Vergleich zu den restlichen Proben eine stark erh{\"o}hte EMR von 14,7\% in BRCA1. Rund ein Drittel (15/44) der EO BC-Patientinnen wiesen eine erh{\"o}hte Rate an Einzel-CpG Fehlern in mehreren TSG auf. Die nachfolgenden Expressionsanalysen ergaben eine erniedrigte Expression vieler TSG je analysierter Patientin. Diese Ergebnisse f{\"u}hren zu der Annahme, dass epigenetische Ver{\"a}nderungen in normalen K{\"o}rperzellen als ein m{\"o}glicher Indikator f{\"u}r einen gest{\"o}rten Mechanismus, der f{\"u}r die Aufrechterhaltung des unmethylierten Status und der daraus resultierenden normalen Genexpression zust{\"a}ndig ist, angesehen werden k{\"o}nnen. Dies kann mit einem erh{\"o}hten BC-Risiko assoziiert werden.}, subject = {Epigenetik}, language = {de} } @phdthesis{Mueller2021, author = {M{\"u}ller, Heike Milada}, title = {Anpassung an Trocken- und Salzstress: Untersuchungen an Modellpflanzen und Extremophilen}, doi = {10.25972/OPUS-17900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179005}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Die wahrscheinlich gr{\"o}ßten Probleme des 21. Jahrhunderts sind der Klimawandel und die Sicherstellung der Nahrungsmittelversorgung f{\"u}r eine steigende Zahl an Menschen. Durch die Zunahme von extremen Wetterbedingungen wie Trockenheit und Hitze wird der Anbau konventioneller, wenig toleranter Nutzpflanzen erschwert und die dadurch notwendige, steigende Bew{\"a}sserung der Fl{\"a}chen f{\"u}hrt dar{\"u}ber hinaus zu einer zus{\"a}tzlichen Versalzung der B{\"o}den mit f{\"u}r Pflanzen toxischen Natrium- und Chlorid-Ionen. Kenntnisse {\"u}ber Anpassungsstrategien salztoleranter Pflanzen an Salzstress, aber auch detailliertes Wissen {\"u}ber die Steuerung der Transpiration und damit des Wasserverlusts von Pflanzen sind daher wichtig, um auch k{\"u}nftig ertragreiche Landwirtschaft betreiben zu k{\"o}nnen. In dieser Arbeit habe ich verschiedene Aspekte der pflanzlichen Stressphysiologie bearbeitet, die im Folgenden getrennt voneinander zusammengefasst werden. I. Funktionelle Unterschiede der PYR/PYL-Rezeptoren von Schließzellen Entscheidend f{\"u}r den Wasserstatus von Pflanzen ist die Kontrolle des Wasserverlusts durch Spalt{\"o}ffnungen (Stomata), die von einem Paar Schließzellen gebildet werden. Externe Faktoren wie Licht, Luftfeuchtigkeit und CO2, sowie interne Faktoren wie das Phytohormon Abszisins{\"a}ure (ABA) regulieren {\"u}ber Signalkaskaden die Stomaweite und dadurch den Wasserverlust. Die zugrunde liegenden Signalkaskaden {\"u}berlappen teilweise. Vor allem der Stomaschluss durch erh{\"o}htes CO2 und ABA weisen viele Gemeinsamkeiten auf und die Identifizierung des Konvergenzpunktes beider Signale ist immer noch aktueller Gegenstand der Forschung. Von besonderem Interesse sind dabei die in Schließzellen exprimierten ABA-Rezeptoren der PYR/PYL-Familie. Denn obwohl bislang nicht nachgewiesen werden konnte, dass CO2 zu einem Anstieg des ABA-Gehalts von Schließzellen f{\"u}hrt deuten einige Studien darauf hin, dass die ABA-Rezeptoren selbst am CO2-Signalweg beteiligt sind. Durch Untersuchungen der Stomareaktion von Arabidopsis ABA-Rezeptormutanten konnte ich in dieser Arbeit zeigen, dass die in Schließzellen exprimierten ABA-Rezeptoren der PYR/PYL-Familie funktionale Unterschiede aufweisen. F{\"u}nffach-Verlustmutanten der ABA-Rezeptoren PYR1, PYL2, 4, 5 und 8 (12458) waren in ihrem ABA-induzierten Stomaschluss beeintr{\"a}chtigt und nur die Komplementation mit PYL2 und in geringerem Maße PYR1 konnte die ABA-Sensitivit{\"a}t wiederherstellen. Die Stomata von 12458-Verlustmutanten waren außerdem insensitiv gegen{\"u}ber erh{\"o}htem CO2, was auf eine Beteiligung der ABA-Rezeptoren am CO2-induzierten Stomaschluss hindeutet und diese Sensitivit{\"a}t konnte nur durch die Komplementation mit PYL4 oder PYL5, nicht aber mit PYL2 wiederhergestellt werden. Somit konnten in dieser Arbeit erstmals funktionelle Unterschiede der PYR/PYLs beim Stoma-Schluss nachgewiesen werden. Alle externen und internen Stomaschluss-Signale haben außerdem Einfluss auf die Genexpression der Schließzellen und f{\"u}hren zu individuellen expressionellen Adaptionen. In vorangegangenen Microarray Studien konnte gezeigt werden, dass jeder Stimulus auch die Expression eines distinkten Sets an ABA-Rezeptoren beeinflusst. Im Rahmen dieser Arbeit konnte ich außerdem zeigen, dass die Expression der ABA-Rezeptoren bereits auf kleine {\"A}nderungen der ABA-Konzentration der Schließzellen reagiert und dass diese sich außerdem in ihrer Sensitivit{\"a}t gegen{\"u}ber ABA unterschieden. Geringe {\"A}nderungen der ABA-Konzentration von Schließzellen haben demnach Auswirkungen auf deren Rezeptor-zusammensetzung. Dar{\"u}ber hinaus konnte ich zeigen, dass die Rezeptoren die Expression unterschiedlicher nachgeschalteter Gene beeinflussen, was darauf hindeutet, dass Anpassungen des Rezeptorpools durch geringe {\"A}nderungen des ABA-Gehalts von Schließzellen schlussendlich auf genexpressioneller Ebene zur l{\"a}ngerfristigen Adaption an externe Bedingungen f{\"u}hren und die Rezeptoren auch hier funktional verschieden sind. II. Stomat{\"a}re Besonderheiten der toleranten Dattelpalme (Phoenix dactylifera) Dattelpalmen kommen nat{\"u}rlicherweise an besonders trockenen und heißen Standorten vor, an denen es aufgrund der harschen Bedingungen nur sehr wenigen Pflanzen m{\"o}glich ist {\"u}berhaupt zu wachsen. Ein naheliegender Grund f{\"u}r die herausragende Toleranz dieser Art gegen{\"u}ber wasserlimitierenden Bedingungen ist eine Anpassung der stomat{\"a}ren Regulation zu Gunsten des Wasserhaushalts. In dieser Arbeit konnte ich durch vergleichende Untersuchungen der lichtabh{\"a}ngigen Transpiration sowie dem ABA-induzierten Stomaschluss grundlegende Unterschiede in der Stomaphysiologie der Dattelpalmen und der eher sensitiven Modellpflanze Arabidopsis thaliana nachweisen. Blattgaswechselmessungen zeigten, dass Dattelpalmen in der Lage sind die Spalt{\"o}ffnungen bei niedrigen Lichtintensit{\"a}ten, bei denen Arabidopsis bereits deutlich ge{\"o}ffnete Stomata aufwies, geschlossen zu halten. Der bedeutendste Unterschied in der Stomaphysiologie von Dattelpalmen und Arabidopsis lag aber im ABA-induzierten Stomaschluss. W{\"a}hrend {\"u}ber die Petiole verabreichtes ABA bei Arabidopsis innerhalb von 15 Minuten zu einem vollst{\"a}ndigen Stomaschluss f{\"u}hrte, konnte ich in dieser Arbeit zeigen, dass der ABA-induzierte Stomaschluss der Datteln nitratabh{\"a}ngig ist. ABA allein f{\"u}hrte nur zu einem sehr langsamen Stomaschluss der innerhalb einer Stunde nicht vollst{\"a}ndig abgeschlossen war. Nur in Gegenwart von Nitrat f{\"u}hrte die ABA-Gabe in den Transpirationsstrom der Fiederbl{\"a}tter der Datteln zu einem schnellen und vollst{\"a}ndigen Stomaschluss. In Arabidopsis wird der in Schließzellen vorkommende Anionenkanal AtSLAC1 durch eine {\"u}ber den ABA-Signalweg vermittelte Phosphorylierung aktiviert, was schlussendlich zur Aktivierung spannungsabh{\"a}ngiger Kationenkan{\"a}le und zum Ausstrom von Kalium aus den Schließzellen f{\"u}hrt. Es konnte gezeigt werden, dass die Nitratabh{\"a}ngigkeit der ABA-Antwort der Schließzellen von Dattelpalmen auf Eigenschaften von PdSLAC1 zur{\"u}ckzuf{\"u}hren ist und dieser Kanal nur in Anwesenheit von extrazellul{\"a}rem Nitrat aktivierbar ist. Mittlerweile konnte, unter anderem basierend auf diesen Ergebnissen, eine Tandem-Aminos{\"a}uresequenz identifiziert werden, die die SLAC-Homologe monokotyler Pflanzen wie der Dattelpalme von der dikotyler Pflanzen unterscheidet und zumindest teilweise f{\"u}r die nitratabh{\"a}ngige Aktivierung des Stomaschlusses vieler monokotyler verantwortlich ist. III. Die Salztoleranz von Phoenix dactylifera und Chenopodium quinoa Sowohl Dattelpalmen als auch C. quinoa weisen, verglichen mit den meisten anderen Pflanzen, eine hohe Toleranz gegen{\"u}ber NaCl-haltigen B{\"o}den auf. In dieser Arbeit habe ich die Salztoleranz beider Arten untersucht, um so Strategien zu identifizieren, die diesen Pflanzen diese gesteigerte Toleranz erm{\"o}glichen. Dattelpalmen k{\"o}nnen nat{\"u}rlicherweise auf salzigen B{\"o}den wachsen. Makroskopisch weisen diese Pflanzen aber keine Anpassungen wie bspw. Salzdr{\"u}sen auf und bislang ist unklar wie Dattelpalmen mit dem NaCl aus dem Boden umgehen. In dieser Arbeit konnte ich zeigen, dass der Natriumgehalt der Fiederbl{\"a}tter der Datteln durch eine sechsw{\"o}chige Bew{\"a}sserung mit 600mM NaCl, was ungef{\"a}hr der Konzentration von Meerwasser entspricht, nicht zunimmt. Demnach sind Datteln so genannte „Exkluder", also Pflanzen, die eine {\"u}berm{\"a}ßige Natriumaufnahme in photosynthetisch aktives Gewebe vermeiden. Der Natriumgehalt der Wurzeln dagegen nahm unter Salzstress aber zu. Diese Zunahme war allerdings in unterschiedlichen Bereichen der Wurzeln verschieden stark. Flammenphotometrische Messungen ergaben einen vom Wurzelansatz ausgehenden graduellen Anstieg des Natriumgehalts, der an der Wurzelspitze am h{\"o}chsten war. Dar{\"u}ber hinaus konnte eine Induktion von PdSOS1, einem putativen Na+/H+-Antiporter in diesen unteren, natriumhaltigen Bereichen nachgewiesen werden. Eine hohe SOS1-Aktivit{\"a}t gilt bereits in anderen toleranten Arten als Schl{\"u}sselmerkmal f{\"u}r deren Toleranz und die gesteigerte Expression von PdSOS1 deutet auf eine erh{\"o}hte Natrium-Exportrate aus der Wurzel zur{\"u}ck in den Boden in diesen unteren Bereichen hin, was schlussendlich den Ausschluss von Natrium vermitteln k{\"o}nnte. In sensitiven Arten f{\"u}hrt Salzstress h{\"a}ufig zu einer Abnahme der Kaliumkonzentration des Gewebes. Interessanterweise war dies weder f{\"u}r das Blatt- noch das Wurzelgewebe der Dattelpalmen der Fall. Der Kaliumgehalt beider Gewebe blieb trotz der Bew{\"a}sserung der Pflanzen mit Salzwasser konstant. Auf expressioneller Ebene konnte ich dar{\"u}ber hinaus zeigen, dass PdHAK5, ein putativer hochaffiner Kaliumtransporter, der unter Kontrollbedingungen {\"u}berwiegend in den oberen Wurzelabschnitten exprimiert wurde, durch den Salzstress dort reprimiert wurde. PdKT, ebenfalls ein putatives Kalium-Transportprotein dagegen, wurde nicht durch die Salzbehandlung beeinflusst, was zusammengenommen darauf hindeutet, dass das Aufrechterhalten des Kaliumgehalts bei Salzstress durch die differentielle Regulation verschiedener Kaliumaufnahmesysteme gew{\"a}hrleistet wird. Der effiziente Ausschluss von Natrium zusammen mit dem hohen K+/Na+-Verh{\"a}ltnis k{\"o}nnten demnach Schl{\"u}sselmerkmale f{\"u}r die hohe Salztoleranz von Phoenix dactylifera darstellen. Quinoa ist, {\"a}hnlich wie die Dattelpalme, eine salztolerante Nutzpflanze. Im Gegensatz zu Dattelpalmen weist Quinoa allerdings besondere Strukturen auf der Epidermis auf, die so genannten epidermalen Blasenhaare (englisch: epidermal bladder cells, EBCs). Die Funktion dieser ballonartig vergr{\"o}ßerten Zellen als externe Salzspeicher wird seit l{\"a}ngerem diskutiert. Flammenphotometrische Messungen des Natriumgehalts von Quinoa unter Salzstressbedingungen ergaben, dass Quinoa anders als Dattelpalmen, Natrium in die oberirdischen, photosynthetisch aktiven Organe aufnimmt. Auch die Zunahme des Natriumgehalts der EBCs konnte ich nachweisen. Junge Bl{\"a}tter haben eine hohe Dichte an intakten EBCs, was deren Funktion als externe Salzspeicher besonders zum Schutz dieser jungen Bl{\"a}tter nahelegt. mRNA-Sequenzierungen ergaben dar{\"u}ber hinaus, dass die EBCs bereits unter Kontrollbedingungen viele in grundlegende Stoffwechselprozesse involvierte Gene sowie membranst{\"a}ndige Transportproteine differentiell exprimieren. Diese Unterschiede im Transkriptom der EBCs zum Blattgewebe zeigen, dass katabole Stoffwechselwege nur eine untergeordnete Rolle in den hochspezialisierten EBCs spielen und deren Stoffwechsel auf dem Import energiereicher Zucker und Aminos{\"a}uren basiert. Mittels qPCR-Messungen und RNA-Sequenzierungen konnte ich die gewebespezifische Expression verschiedener Transportproteine nachweisen, die eine gerichtete Aufnahme von Natrium in EBCs erm{\"o}glichen k{\"o}nnten. Besonders die differentielle Expression eines Natriumkanals der HKT1-Familie deutet auf dessen Beteiligung an der Natriumbeladung der EBCs hin. CqHKT1.2 wurde ausschließlich in EBCs exprimiert und die elektrophysiologische Charakterisierung dieses Transportproteins ergab eine spannungsabh{\"a}ngige Natriumleitf{\"a}higkeit. Dieser Natriumkanal kann demnach die Natriumaufnahme bei Membranspannungen nahe dem Ruhepotential in die EBCs vermitteln und die Deaktivierung des CqHKT1.2 bei depolarisierenden Membranspannungen kann dar{\"u}ber hinaus einen Efflux von Na+ aus den EBCs verhindern. Auch das Expressionsmuster eines putativen Na+/H+-Antiporters (CqSOS1) der nur sehr gering in EBCs aber deutlich h{\"o}her in Blattgewebe exprimiert wurde, deutet auf eine indirekte Beteiligung dieses SOS1 an der Beladung der EBCs hin. Bereits charakterisierte SOS1-Proteine anderer Pflanzen zeigten unter physiologischen Bedingungen eine Natriumexport-Aktivit{\"a}t. CqSOS1 k{\"o}nnte demnach den Export von Natrium aus Mesophyll- und Epidermiszellen der Bl{\"a}tter in den Apoplasten vermitteln, welches dann {\"u}ber CqHKT1.2 in die EBCs aufgenommen wird. Trotz der Natriumaufnahme in die oberirdischen Teile und die EBCs f{\"u}hrte die Salzbehandlung {\"a}hnlich wie bei den Datteln nicht zu einer Abnahme des bemerkenswert hohen Kaliumgehalts. Mittels qPCR-Untersuchungen konnte ich die Expression verschiedener HAK-Orthologe nachweisen, deren Aktivit{\"a}t die Aufrechterhaltung des Kaliumgehalts unter Salzstress vermitteln k{\"o}nnten. Fr{\"u}here Studien konnten zeigen, dass Salzstress bei Quinoa wie bei vielen salztoleranten Arten zu einem Anstieg der Konzentration von kompatiblen gel{\"o}sten Substanzen und besonders von Prolin f{\"u}hrt. In dieser Arbeit konnte ich die hohe Expression eines Prolintransporters in EBCs nachweisen, was eher auf einen importbasierten Anstieg der Prolinkonzentration als auf die Synthese innerhalb der EBCs schließen l{\"a}sst. Zusammengefasst ergaben der Anstieg des Natriumgehalts der EBCs in Verbindung mit den Ergebnissen der RNA-Sequenzierung und den erg{\"a}nzenden qPCR Messungen, dass die EBCs von Quinoa bereits unter Kontrollbedingen f{\"u}r die Aufnahme von {\"u}bersch{\"u}ssigen Ionen unter Salzstress spezialisierte Zellen sind, deren Spezialisierung auf dem Import von energiereichreichen Zucken und anderen Substanzen basiert.}, subject = {Botanik}, language = {de} } @phdthesis{Schaefer2020, author = {Sch{\"a}fer, Nadine}, title = {Eine vergleichende biophysikalische Analyse von Hitze- und Trockentoleranzstrategien der W{\"u}stenpflanze Phoenix dactylifera und Nutzpflanzen der gemäßigten Klimazonen}, doi = {10.25972/OPUS-18649}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186491}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Der Klimawandel geht einher mit einem Anstieg der globalen Durchschnittstemperatur und einem dadurch induzierten Wassermangel. Diese beiden abiotischen Stressfaktoren f{\"u}hren zu einer Reduzierung der landwirtschaftlichen Erträge und Biomassen von Kulturpflanzen. Daher ist eine Anpassung der betroffenen Pflanzenarten an das sich ändernde Klima erforderlich, um die landwirtschaftliche Produktivität in Zukunft aufrechtzuerhalten. Gegenwärtig ist unser Wissen {\"u}ber Strategien zur Toleranz gegen{\"u}ber abiotischem Stress sowie {\"u}ber Genom- und Transkriptionsinformationen auf wenige Modellorganismen von Angiospermen beschränkt, so dass diese Informationen die Basis f{\"u}r die Forschung an Trockenheit und Hitzestress darstellen. Die Untersuchung der Stressadaption innerhalb und zwischen verschiedenen Pflanzengattungen ist von besonderer Relevanz. Vor diesem Hintergrund habe ich im Rahmen meiner Doktorarbeit die Überlebensstrategie der extremophilen W{\"u}stenpflanze Phoenix dactylifera (Dattelpalme) im Vergleich zu zwei Mesophilen, der Kulturpflanze Hordeum vulgare (Gerste) und der Modellpflanze Arabidopsis thaliana, untersucht. Dattelpalmen sind nicht sukkulente W{\"u}stenpflanzen, die auch unter extremen Trocken- und Hitzebedingungen in den W{\"u}sten der Arabischen Halbinsel wachsen und ertragreich Fr{\"u}chte produzieren. In Phoenix dactylifera ist bislang weder die Molekularbiologie und -physiologie der Schließzellen, vor allem der Anionenkanäle, verstanden, noch wurde der Hitzeschutz ihrer Zuckertransportproteine untersucht. Um die stomatäre Reaktion auf das Trockenstresshormon ABA (Abscisinsäure) zu verstehen, klonierten wir die Hauptkomponenten des schnellen ABA-Signalwegs von Schließzellen und analysierten den Öffnungsmechanismus der Anionenkanäle aus der Dattelpalme und der Gerste vergleichend zu dem Anionenkanal aus Arabidopsis im heterologen Expressionssystem der Xenopus Oozyten. Beide monokotyledonen Pflanzenarten (Gerste und Dattelpalme) besitzen stomatäre Komplexe, die aus Schließzellen und Nebenzellen bestehen. Dies unterscheidet die Monokotyledonen von den Dikotyledonen, die normalerweise Stomakomplexe aufweisen, die nur aus einem Paar Schließzellen gebildet werden. Interessanterweise schlossen sich Dattelpalmen- und Gerstenstomata als Reaktion auf das Trockenstresshormon ABA nur in Gegenwart von extrazellulärem Nitrat. Der heterolog-exprimierte Anionenkanal PdSLAC1 wird durch die ABA-Kinase PdOST1 aktiviert und diese Aktivierung wird durch die Koexpression der PP2C-Phosphatase ABI1 gehemmt. Daher wird PdSLAC1 wie seine Orthologen aus Gerste und Arabidopsis durch ein ABA-abhängiges Phosphorylierungs-/Dephosphorylierungsnetzwerk gesteuert. PdOST1 aktivierte den Anionenkanal PdSLAC1 jedoch nur in Gegenwart von extrazellulärem Nitrat - eine elektrische Eigenschaft, die PdSLAC1 mit HvSLAC1 der Gerste gemein hat, sich jedoch von AtSLAC1 unterscheidet. Angesichts der Tatsache, dass in Gegenwart von Nitrat ABA den Stomaschluss verstärkt und beschleunigt, deuten unsere Ergebnisse darauf hin, dass bei Dattelpalmen und Gerste Nitrat als Ligand zum Öffnen von SLAC1 benötigt wird. Dies initiiert die Depolarisation der Schließzellen und leitet schließlich den Stomaschluss ein, um den Wasserverlust der Pflanzen unter Trockenstressbedingungen zu minimieren. Um die monokotyledone spezifische Nitratabhängigkeit von SLAC1 zu verstehen, f{\"u}hrten wir ortsgerichtete Mutagenesestudien auf Basis eines 3D-Modells durch, welche zudem vergleichende Studien an Chimären von Monokotylen- und Dikotylen-SLAC1 Anionenkanälen umfassten. Unsere Struktur-Funktions-Forschung identifizierte zwei Aminosäurenreste auf der Transmembrandomäne 3 (TMD3), die eine wesentliche Rolle bei der Nitrat-abhängigen Regulierung von SLAC1 Anionenkanälen monokotyledoner Pflanzen spielen. Die phylogenetische Analyse ergab schließlich, dass während der Evolution die f{\"u}r Monokotlyedonen spezifische Nitrat-abhängige Regulierung erst nach der Trennung in Monokotyledonen und Dikotyledonen auftrat. Durch die Nitrat-sensitive Regulierung von SLAC1 Anionenkanälen beruht der schnelle Stomaschluss von Monokotyledonen auf dem Zusammenspiel des Trockenstresshormons ABA und dem Stickstoffhaushalt der Pflanze. Da der ABA-Signalweg von Arabidopsis umfassend untersucht wurde, könnte die Entdeckung des monokotyledonen spezifischen Nitrat-abhängigen Motivs in TMD3 nun als Stellschraube zur Verbesserung der Z{\"u}chtungsprogramme dikotyledoner Nutzpflanzen dienen. W{\"u}stenpflanzen leiden nicht nur unter Trockenheit, sondern auch unter extremem Hitzestress. Wir konnten zeigen, dass hitzebelastete Dattelpalmen große Mengen der fl{\"u}chtigen Kohlenwasserstoffverbindung Isopren (2-Methyl-1,3-Butadien) produzieren und emittieren. Durch die vor{\"u}bergehende Freisetzung von Isopren kann die Pflanze die Photosynthese auch bei extremen Temperaturen betreiben. Es ist jedoch nicht bekannt, ob und wie Isopren in Hitzeperioden auch Transportprozesse durch biologische Membranen sch{\"u}tzt. Um den Einfluss von Isopren auf den Transmembrantransport zu untersuchen, identifizierten und klonierten wir den Protonen-gekoppelten Saccharosetransporter 1 (PdSUT1) der Dattelpalme und verglichen seine elektrischen Eigenschaften mit ZmSUT1 (Zea mays Sucrose Transporter 1) im heterologen Expressionssystem der Xenopus Oozyten. Interessanterweise waren das elektrische Verhalten, die kinetischen Eigenschaften und die Temperaturabhängigkeit beider Transporter ähnlich. Die Anwendung von Isopren veränderte jedoch massiv die Affinität von ZmSUT1 zu seinem Substrat Saccharose, während die Affinität des Transporters der Dattelpalme nur schwach beeinflusst wurde. Es wird angenommen, dass die Membranfluidität unter Hitzestress erniedrigt ist, welches durch Interkalierung von Isopren mit den Fettsäureketten biologischer Membrane einhergeht. Dies und die Unempfindlichkeit von PdSUT1 gegen{\"u}ber Isopren deuten darauf hin, dass der Saccharosetransporter PdSUT1 aus der W{\"u}stenpflanze auch bei hohen Temperaturen Saccharose mit hoher Affinität transportiert. Zuk{\"u}nftige Studien m{\"u}ssen nun klären, ob der fl{\"u}chtige Kohlenwasserstoff Isopren einen direkten Einfluss auf den Transporter selbst hat oder Isopren in die Membran integriert und damit indirekt die Eigenschaften von Transportproteinen beeinflusst. Unabhängig von der Wirkungsweise von Isopren sollte nicht unerwähnt bleiben, dass PdSUT1 gegen{\"u}ber Isopren weniger empfindlich ist als sein Ortholog ZmSUT1 aus Mais. Dies kann auf eine Anpassung des Saccharosetransporters an die extremen Hitzeperioden und die damit einhergehende Isoprenemission von Dattelpalmen zur{\"u}ckzuf{\"u}hren sein.}, subject = {Dattelpalme}, language = {de} } @phdthesis{Anwar2022, author = {Anwar, Ammarah}, title = {Natural variation of gene regulatory networks in \(Arabidopsis\) \(thaliana\)}, doi = {10.25972/OPUS-29154}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-291549}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Understanding the causal relationship between genotype and phenotype is a major objective in biology. The main interest is in understanding trait architecture and identifying loci contributing to the respective traits. Genome-wide association mapping (GWAS) is one tool to elucidate these relationships and has been successfully used in many different species. However, most studies concentrate on marginal marker effects and ignore epistatic and gene-environment interactions. These interactions are problematic to account for, but are likely to make major contributions to many phenotypes that are not regulated by independent genetic effects, but by more sophisticated gene-regulatory networks. Further complication arises from the fact that these networks vary in different natural accessions. However, understanding the differences of gene regulatory networks and gene-gene interactions is crucial to conceive trait architecture and predict phenotypes. The basic subject of this study - using data from the Arabidopsis 1001 Genomes Project - is the analysis of pre-mature stop codons. These have been incurred in nearly one-third of the ~ 30k genes. A gene-gene interaction network of the co-occurrence of stop codons has been built and the over and under representation of different pairs has been statistically analyzed. To further classify the significant over and under- represented gene-gene interactions in terms of molecular function of the encoded proteins, gene ontology terms (GO-SLIM) have been applied. Furthermore, co- expression analysis specifies gene clusters that co-occur over different genetic and phenotypic backgrounds. To link these patterns to evolutionary constrains, spatial location of the respective alleles have been analyzed as well. The latter shows clear patterns for certain gene pairs that indicate differential selection.}, subject = {Arabidopsis thaliana}, language = {en} } @phdthesis{LopezArboleda2021, author = {L{\´o}pez Arboleda, William Andr{\´e}s}, title = {Global Genetic Heterogeneity in Adaptive Traits}, doi = {10.25972/OPUS-24246}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242468}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Genome Wide Association Studies (GWAS) have revolutionized the way on how genotype-phenotype relations are assessed. In the 20 years long history of GWAS, multiple challenges from a biological, computational, and statistical point of view have been faced. The implementation of this technique using the model plant species Arabidopsis thaliana, has enabled the detection of many association for multiple traits. Despite a lot of studies implementing GWAS have discovered new candidate genes for multiple traits, different samples are used across studies. In many cases, either globally diverse samples or samples composed of accessions from a geographically restricted area are used. With the aim of comparing GWAS outcomes between populations from different geographic areas, this thesis describes the performance of GWAS in different European samples of A. thaliana. Here, association mapping results for flowering time were compared. Chapter 2 describes the analyses of random resampling from this original sample. The aim was to establish reduced subsamples to later carry out GWAS and compare the outcomes between these subsamples. In Chapter 3, the European sample was split into eight equally-sized local samples representing different geographic regions. Next, GWAS was carried out and an attempt was made to clarify the differences in GWAS outcomes. Chapter 4 contains the results of a collaboration with Prof. Dr. Wolfgang Dr{\"o}ge- Laser, in which my mainly task was the analysis of RNAseq data from A. thaliana plants infected by pathogenic fungi. Finally, Appendix A presents a very short description of my participation in the GHP Project on Access to Care for Cardiometabolic Diseases (HPACC) at the university of Heidelberg.}, language = {en} } @phdthesis{Freudenthal2020, author = {Freudenthal, Jan Alexander}, title = {Quantitative genetics from genome assemblies to neural network aided omics-based prediction of complex traits}, doi = {10.25972/OPUS-19942}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199429}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Quantitative genetics is the study of continuously distributed traits and their ge- netic components. Recent developments in DNA sequencing technologies and computational systems allow researchers to conduct large scale in silico studies. However, going from raw DNA reads to genomic prediction of quantitative traits with the help of neural networks is a long and error-prone process. In the course of this thesis, many steps involved in this process will be assessed in depth. Chap- ter 2 will feature a study that compares the landscape of chloroplast genome as- sembly tools. Chapter 3 will present a software to perform genome-wide associa- tion studies using modern tools, which allow GWAS-Flow to outperform current state of the art software packages. Chapter 4 will give an in depth introduc- tion to machine learning and the nature of quantitative traits and will combine those to genomic prediction with artificial neural networks and compares the re- sults to those of algorithms based on linear mixed models. Finally, in Chapter 5 the results from the previous chapters are summarized and used to elucidate the complex nature of studies concerning quantitative genetics.}, subject = {Genetics}, language = {en} } @phdthesis{vonRueden2022, author = {von R{\"u}den, Martin Frederik}, title = {The Venus flytrap - Role of oxylipins in trap performance of Dionaea muscipula}, doi = {10.25972/OPUS-27385}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-273854}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {A part of the plant kingdom consists of a variety of carnivorous plants. Some trap their prey using sticky leaves, others have pitfall traps where prey cannot escape once it has fallen inside. A rare trap type is the snap-trap: it appears only twice in the plant kingdom, in the genera Aldrovanda and Dionaea. Even Charles Darwin himself described Dionaea muscipula, the Venus flytrap, with the following words "This plant, commonly called Venus' fly-trap, from the rapidity and force of its movements, is one of the most wonderful in the world". For a long time now, the mechanisms of Dionaea's prey recognition, capture and utilization are of interest for scientists and have been studied intensively. Dionaea presents itself with traps wide-open, ready to catch insects upon contact. For this, the insect has to touch the trigger hairs of the opened trap twice within about 20-30 seconds. Once the prey is trapped, the trap lobes close tight, forming a hermetically sealed "green stomach". Until lately, there was only limited knowledge about the molecular and hormonal mechanisms which lead to prey capture and excretion of digestive fluids. It is known that the digestion process is very water-consuming; therefore, the interplay of digestion-inducing and digestion inhibiting substances was to be analyzed in this work, to elucidate the fine-tuning of the digestive pathway. Special attention was given to the impact of phytohormones on mRNA transcript levels of digestion-related proteins after various stimuli as well as their effect on Dionaea's physiological responses. Jasmonic acid (JA) and its isoleucine-conjugated form, JA-Ile, are an important signal in the jasmonate pathway. In the majority of non-carnivorous plants, jasmonates are critical for the defense against herbivory and pathogens. In Dionaea, this defense mechanism has been restructured towards offensive prey catching. One question in this work was how the frequency of trigger hair bendings is related to the formation of jasmonates and the induction of the digestion process. Upon contact of a prey with the trigger hairs in the inside of the trap, the trap closes and jasmonates are produced biosynthetically. JA-Ile interacts with the COI1- receptor, thereby activating the digestion pathway which leads to the secretion of digestive fluid and production of transporters needed to take up prey-derived nutrients. In this work it could be shown that the number of trigger hair bendings is positively correlated with the level and duration of transcriptional induction of several digestive enzymes/hydrolases. Abscisic acid (ABA) acts, along with many other functions, as the plant "drought stress hormone". It is synthesized either by roots as the primary sensor for water shortage or by guard cells in the leaves. ABA affects a network of several thousand genes whose regulation prepares the plant for drought and initiates protective measurements. It was known from previous work that the application of ABA for 48 hours increased the required amount of trigger hair bendings to achieve trap closure. As the digestion process is very water-intensive, the question arose how exactly the interplay between the jasmonate- and the ABA-pathway is organized, and if ABA could stop the running digestion process once it had been activated. In the present work it could be shown that the application of ABA on intact traps prior to mechanically stimulating the trigger hairs (mechanostimulation) already significantly reduced the transcription of digestive enzymes for an incubation time as short as 4 h, showing that already short-term exposure to ABA counteracts the effects of jasmonates when it comes to initiating the digestion process, but does not inhibit trap closure. Incubation for 24 and 48 hours with 100 μM active ABA had no effect on trap reopening, only very high levels of 200 μM of active ABA inhibited trap reopening but also led to tissue necrosis. As the application of ABA could reduce the transcription of digestive hydrolases, it is likely that Dionaea can stop the digestion process, if corresponding external stimuli are received. Another factor, which only emerged later, was the effect of the wounding-induced systemic jasmonate burst. As efficient as ABA was in inhibiting marker hydrolase expression after mechanostimulation in intact plants, the application of ABA on truncated traps was not able to inhibit mechanostimulation-induced marker hydrolase expression. One reason might be that the ABA-signal is perceived in the roots, and therefore truncated traps were not able to react to it. Another reason might be that the wounding desensitized the tissue for the ABAsignal. Further research is required at this point. Inhibitors of the jasmonate pathway were also used to assess their effect on the regulation of Dionaea´s hunting cycle. Coronatine-O-methyloxime proved to be a potent inhibitor of mechanostimulation-induced expression of digestive enzymes, thus confirming the key regulatory role of jasmonates for Dionaea´s prey consumption mechanism. In a parallel project, the generation of in vitro cultures from sterilized seeds and single plant parts proved successful, which may be important for stock-keeping of future transgenic lines. Protoplasts were generated from leaf blade tissue and transiently transformed, expressing the reporter protein YFP after 24 h of incubation. In the future this might be the starting point for the generation of transgenic lines or the functional testing of DNA constructs.}, subject = {Venusfliegenfalle}, language = {en} }