@phdthesis{Then2017, author = {Then, Patrick}, title = {Waveguide-based single molecule detection in flow}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140548}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In this work fluorescence-based single molecule detection at low concetration is investigated, with an emphasis on the usage of active transport and waveguides. Active transport allows to overcome the limits of diffusion-based systems in terms of the lowest detectable threshold of concentration. The effect of flow in single molecule experiments is investigated and a theoretical model is derived for laminar flow. Waveguides on the other hand promise compact detection schemes and show great potential for their possible integration into lab-on-a-chip applications. Their properties in single molecule experiments are analyzed with help of a method based on the reciprocity theorem of electromagnetic theory.}, subject = {Optik}, language = {en} } @phdthesis{Carinci2017, author = {Carinci, Flavio}, title = {Quantitative Characterization of Lung Tissue Using Proton MRI}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151189}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The focus of the work concerned the development of a series of MRI techniques that were specifically designed and optimized to obtain quantitative and spatially resolved information about characteristic parameters of the lung. Three image acquisition techniques were developed. Each of them allows to quantify a different parameter of relevant diagnostic interest for the lung, as further described below: 1) The blood volume fraction, which represents the amount of lung water in the intravascular compartment expressed as a fraction of the total lung water. This parameter is related to lung perfusion. 2) The magnetization relaxation time T\(_2\) und T� *\(_2\) , which represents the component of T\(_2\) associated with the diffusion of water molecules through the internal magnetic field gradients of the lung. Because the amplitude of these internal gradients is related to the alveolar size, T\(_2\) und T� *\(_2\) can be used to obtain information about the microstructure of the lung. 3) The broadening of the NMR spectral line of the lung. This parameter depends on lung inflation and on the concentration of oxygen in the alveoli. For this reason, the spectral line broadening can be regarded as a fingerprint for lung inflation; furthermore, in combination with oxygen enhancement, it provides a measure for lung ventilation.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Feichtner2017, author = {Feichtner, Thorsten}, title = {Optimal Design of Focusing Nanoantennas for Light : Novel Approaches: From Evolution to Mode-Matching}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140604}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Optische Antennen arbeiten {\"a}hnlich wie Antennen f{\"u}r Radiowellen und wandeln elektromagnetische Strahlung in elektrische Wechselstr{\"o}me um. Ladungsdichteansammlungen an der Antennen-Oberfl{\"a}che f{\"u}hren zu starken und lokalisierten Nahfeldern. Da die meisten optischen Antennen eine Ausdehnung von wenigen hundert Nanometern besitzen, erm{\"o}glichen es ihre Nahfelder, Licht auf ein Volumen weit unterhalb des Beugungslimits zu fokussieren, mit Intensit{\"a}ten, die mehrere Gr{\"o}ßenordnungen {\"u}ber dem liegen, was man mit klassischer beugender und reflektierender Optik erreichen kann. Die Aufgabe, die Abstrahlung eines Quantenemitters zu maximieren, eines punktf{\"o}rmigen Objektes, welches einzelne Photonen absorbieren und emittieren kann, ist identisch mit der Aufgabe, die Feldintensit{\"a}t am Ort des Quantenemitters zu maximieren. Darum ist es erstrebenswert, den Fokus optischer Antennen zu optimieren Optimierte Radiofrequenz-Antennen, welche auf Gr{\"o}ßenordnungen von wenigen 100 Nanometern herunterskaliert werden, zeigen bereits eine gute Funktionalit{\"a}t. Jedoch liegen optische Frequenzen in der N{\"a}he der Plasmafrequenz von den Metallen, die f{\"u}r optische Antennen genutzt werden und die Masse der Elektronen kann nicht mehr vernachl{\"a}ssigt werden. Dadurch treten neue physikalische Ph{\"a}nomene auf. Es entstehen gekoppelte Zust{\"a}nde aus Licht und Ladungsdichte-Schwingungen, die sogenannten Plasmonen. Daraus folgen Effekte wie Volumenstr{\"o}me und k{\"u}rzere effektive Wellenl{\"a}ngen. Zus{\"a}tzlich f{\"u}hrt die endliche Leitf{\"a}higkeit zu thermischen Verluste. Das macht eine Antwort auf die Frage nach der optimalen Geometrie f{\"u}r fokussierende optische Antennen schwer. Jedoch stand vor dieser Arbeit der Beweis noch aus, dass es f{\"u}r optische Antennen bessere Alternativen gibt als herunterskalierte Radiofrequenz-Konzepte. In dieser Arbeit werden optische Antennen auf eine bestm{\"o}gliche Fokussierung optimiert. Daf{\"u}r wird ein Ansatz gew{\"a}hlt, welcher bei Radiofrequenz-Antennen f{\"u}r komplexe Anwendungsfelder (z.B. isotroper Breitbandempfang) schon oft Erfolg hatte: evolution{\"a}re Algorithmen. Die hier eingef{\"u}hrte erste Implementierung erlaubt eine große Freiheit in Bezug auf Partikelform und Anzahl, da sie quadratische Voxel auf einem planaren, quadratischen Gitter beliebig anordnet. Die Geometrien werden in einer bin{\"a}ren Matrix codiert, welche als Genom dient und somit Methoden wie Mutation und Paarung als Verbesserungsmechanismus erlaubt. So optimierte Antennen-Geometrien {\"u}bertreffen vergleichbare klassische Dipol-Geometrien um einen Faktor von Zwei. Dar{\"u}ber hinaus l{\"a}sst sich aus den optimierten Antennen ein neues Funktionsprinzip ableiten: ein magnetische Split-Ring-Resonanz kann mit Dipol-Antennen leitend zu neuartigen und effektiveren Split-Ring-Antennen verbunden werden, da sich ihre Str{\"o}me nahe des Fokus konstruktiv {\"u}berlagern. Im n{\"a}chsten Schritt wird der evolution{\"a}re Algorithmus so angepasst, so die Genome real herstellbare Geometrien beschreiben. Zus{\"a}tzlich wird er um eine Art ''Druckertreiber'' erweitert, welcher aus den Genomen direkt Anweisungen zur fokussierten Ionenstrahl-Bearbeitung von einkristallinen Goldflocken erstellt. Mit Hilfe von konfokaler Mikroskopie der Zwei-Photonen-Photolumineszenz wird gezeigt, dass Antennen unterschiedlicher Effizienz reproduzierbar aus dem evolution{\"a}ren Algorithmus heraus hergestellt werden k{\"o}nnen. Außerdem wird das Prinzip der Split-Ring-Antenne verbessert, indem zwei Ring-Resonanzen zu einer Dipol-Resonanz hinzugef{\"u}gt werden. Zu guter Letzt dient die beste Antenne des zweiten evolution{\"a}re Algorithmus als Inspiration f{\"u}r einen neuen Formalismus zur Beschreibung des Leistungs{\"u}bertrages zwischen einer optischen Antenne und einem Punkt-Dipol, welcher sich als "dreidimensionaler Moden{\"u}berlapp" beschreiben l{\"a}sst. Damit k{\"o}nnen erstmals intuitive Regeln f{\"u}r die Form einer optischen Antenne aufgestellt werden. Die G{\"u}ltigkeit der Theorie wird analytisch f{\"u}r den Fall eines Dipols nahe einer metallischen Nano-Kugel gezeigt. Das vollst{\"a}ndige Problem, Licht mittels einer optischen Antenne zu fokussieren, l{\"a}sst sich so auf die Erf{\"u}llung zweier Moden{\"u}berlapp-Bedingungen reduzieren -- mit dem Feld eines Punktdipols, sowie mit einer ebenen Welle. Damit lassen sich zwei Arten idealer Antennenmoden identifizieren, welche sich von der bekannten Dipol-Antennen-Mode grundlegend unterscheiden. Zum einen l{\"a}sst sich dadurch die Funktionalit{\"a}t der evolution{\"a}ren und Split-Ring-Antennen erkl{\"a}ren, zum lassen sich neuartige plasmonische Hohlraum-Antennen entwerfen, welche zu besserer Fokussierung von Licht f{\"u}hren. Dies wird numerisch im direkten Vergleich mit einer klassischen Dipolantennen-Geometrie gezeigt.}, subject = {Physik}, language = {en} }