@phdthesis{Pfeuffer2016, author = {Pfeuffer, Rebekka Christina}, title = {Growth and characterization of II-VI semiconductor nanowires grown by Au catalyst assisted molecular beam epitaxy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141385}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {In the present PhD thesis the control of the morphology, such as the diameter, the length, the orientation, the density, and the crystalline quality of 1D ZnSe NWs grown by MBE for optical and transport applications has been achieved.}, subject = {Zinkselenid}, language = {en} } @phdthesis{Tavakoli2014, author = {Tavakoli, Kia}, title = {Herstellung und Charakterisierung spintronischer und caloritronischer (Ga,Mn)As-Nanostrukturen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103241}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Die elektronischen Bauteile, die aus unserer technischen Welt kaum wegzuddenken sind, werden immer kleiner. Aktuelle ICs bestehen zum Beispiel aus Milliarden von Transistoren, von denen jeder einzelne kleiner als 100nm (dem 100-stel des typischen Durchmessers eines Menschenhaars) ist. Dass die Entwicklung auch zuk{\"u}nftig weiter dem Trend des Mooreschen Gesetzes folgen wird, gilt hierbei als unbestritten. Die interessanteste Fragestellung der Halbleiter- und Nanostrukturforschung in diesem Zusammenhang ist: Kann man die weitere Entwicklung der Informations- und Kommunikationstechnik dadurch erreichen, dass man die Miniaturisierung der Transistoren in Mikroprozessoren und Speicherbauelementen weiter vorantreibt oder ist man auf g{\"a}nzlich neue Wege angewiesen? Bei der weitergehenden Miniaturisierung ist die gr{\"o}ßte H{\"u}rde darin zu suchen, ob man in der Lage sein wird die Verbrauchsleistung dieser Bauelemente weiter zu reduzieren, um die {\"U}berhitzung der Bauteile in den Griff zu bekommen und nicht zuletzt auch, um Energie zu sparen. Die heutige Elektronik hat ihre Grundlagen in den 60er Jahren. Diese Art der Elektronik ist jedoch hinsichtlich der Effizienzsteigerungen und vor allem der W{\"a}rmeentwicklung an ihre Grenzen gestoßen. Hauptursache f{\"u}r diese problematische W{\"a}rmeentwicklung sind die elektrischen Verbindungen, die die Informationen zwischen der halbleiterbasierten Datenverarbeitung und den metallischen Speicherelementen hin und hertransportieren. Obwohl diese elektrischen Verbindungen zum aktuellen Zeitpunkt aus der Computerarchitektur nicht weg zu denken sind, ist es eines der Hauptziele diese Verbindungen nicht mehr verwenden zu m{\"u}ssen. Dies kann jedoch nur erreicht werden, wenn es gelingt, die Speicherelemente und Datenverarbeitung in einem einzigen Element (Halbleiter) zu vereinen. Bisher wurde die Ladung eines Elektrons f{\"u}r die Verarbeitung von elektrischen Informationen bzw. Zust{\"a}nden benutzt. Was w{\"a}re jedoch, wenn man diese bisherige Basis v{\"o}llig {\"a}ndert? Der Spin der Elektronen ist ein viel effektiverer Informationstr{\"a}ger als die Ladung der Elektronen selbst, nicht zuletzt deshalb, weil die Ver{\"a}nderung des Spins eines Elektrons im Vergleich zu dessen Bewegung einen weitaus geringeren Energiebetrag ben{\"o}tigt [1]. Die Technik, die zus{\"a}tzlich zur Informationsverarbeitung durch makroskopische Elektronenstr{\"o}me den viel effektiveren Spin-Quantenzustand der Elektronen oder L{\"o}cher als Freiheitsgrad nutzt, ist die sogenannte Spintronik1. Die Spinfreiheitsgrade er{\"o}ffnen, wegen der l{\"a}ngeren Phasenkoh{\"a}renzl{\"a}nge, im Vergleich zu den orbitalen Freiheitsgraden, v{\"o}llig neue Wege f{\"u}r zuk{\"u}nftige Entwicklungen wie z.B. den Quantencomputer. Damit w{\"a}re die Entwicklung niederenergetischer Bauelemente m{\"o}glich, die fast keine W{\"a}rmeentwicklung aufweisen. Wegen dieser vielen Vorteile hat sich die Spintronik in Rekordzeit von einer interessanten wissenschaftlichen Beobachtung in Rekordzeit zu einer marktbewegenden Anwendung weiterentwickelt (Nobelpreis 2007). Seinen Anfang nahm diese Entwicklung 1988 mit der Entdeckung des GMR-Effekts. Nach nur 9 Jahren wurden 1997 erste Festplatten-Lesek{\"o}pfe eingesetzt, die sich diesen Effekt zu Nutze machten. Lesek{\"o}pfe, die den Riesenmagnetwiderstand nutzen, waren nunmehr um ein Vielfaches empfindlicher als es die konventionelle Technik zugelassen h{\"a}tte. Die Speicherdichte und damit die Kapazit{\"a}ten der Festplatten konnte somit erheblich gesteigert und Festplatten mit zuvor nie gekannter Speicherkapazit{\"a}t preiswert produziert werden. Seit dieser Zeit r{\"u}ckt der Elektronenspin immer weiter in den Brennpunkt von Forschung und Entwicklung. Da sich der elektrische Widerstand von Halbleitern in einem weiten Bereich manipulieren l{\"a}sst (was f{\"u}r ferromagnetische Metalle nicht der Fall ist), werden logische Bauelemente aus halbleitenden Materialien hergestellt. Im Gegensatz dazu sind ferromagnetische Metalle sehr gute Kandidaten f{\"u}r die Speicherung von Informationen. Dies liegt vor allem daran, dass zuf{\"a}llige Magnetfelder viel schw{\"a}cher sind, als zuf{\"a}llige elektrische Felder, was ferromagnetische Systeme wesentlich unanf{\"a}lliger macht. Daher sind die magnetischen Speicher nicht fl{\"u}chtig und zudem m{\"u}ssen deren Informationsgehalte nicht wie bei DRAM immer wieder aufgefrischt werden. Um die jeweiligen Vorteile der Materialklassen - die magnetisch energiesparende sowie dauerhafte Speicherf{\"a}higkeit der Metalle und die logischen Operationen der Halbleiter - miteinander kombinieren zu k{\"o}nnen und damit neuartige Bauelemente wie z.B. MRAMs (logische Operationen und dauerhafte Speicherung) zu bauen, sind ferromagnetischen Halbleiter unverzichtbar. Auf dieser Basis k{\"o}nnten Speicherelemente und Datenverarbeitung in einem einzigen Element (Halbleiter) dargestellt werden. Zugleich braucht man aber auch neue Wege, um diese Speicher zu magnetisieren und sp{\"a}ter auslesen zu k{\"o}nnen. Ein weiterer Vorteil liegt zudem darin, dass hierzu kein Einsatz beweglicher Teile notwendig ist. Die Magnetisierungskontrolle muss aber temperaturunabh{\"a}ngig sein! Der am besten erforschte ferromagnetische Halbleiter ist (Ga,Mn)As, der deswegen die Modellrolle einnimmt und als Prototyp f{\"u}r alle ferromagnetischen Halbleiter dient. Die Kopplung seiner magnetischen und halbleitenden Eigenschaften durch Spin-Bahn-Wechselwirkung ist die Ursache vieler neuer Transportph{\"a}nomene in diesem Materialsystem. Diese Ph{\"a}nomene sind vielfach die Grundlage f{\"u}r neuartige Anwendungen, Bauteildesigns und Wirkprinzipien. Das Ziel dieser Arbeit ist es, die interessanten Anisotropien in (Ga,Mn)As, die von der sehr starken Spin-Bahn-Kopplung im Valenzband herr{\"u}hren zu nutzen, sowie neue spinbezogene Effekte in verschiedenen magnetischen Bauelementen zu realisieren. Die vorliegende Arbeit gliedert sich wie folgt: In Kapitel 1 wird auf die grundlegenden Eigenschaften des (Ga,Mn)As und einige neuartige Spineffekten, die dieses Material mit sich bringt, eingegangen. Das zur Erzeugung dieser Effekte notwendige fertigungstechnische Wissen, f{\"u}r die lithografische Erzeugung der spintronisch bzw. caloritronisch aktiven Nanostrukturen, wird im Kapitel 2 beschrieben. Um mit dieser Welt der Spineffekte „kommunizieren" und die Effekte kontrollieren zu k{\"o}nnen, sind entsprechend angepasste und funktionsf{\"a}hige Kontaktierungen notwendig. Mit der detaillierten Herstellung und Analyse dieser Kontakte besch{\"a}ftigt sich das Kapitel 3. Es wurden zwei Arten von Kontakten hergestellt und bei den Proben eingesetzt: in situ (innerhalb der MBE-Wachstumskammer) und ex situ. Zusammenfassend l{\"a}sst sich sagen, dass bei der ex situ-Probenpr{\"a}paration, die Reproduzierbarkeit der Kontakte, besonders bei logisch magnetischen Elementen, nicht gew{\"a}hrleistet werden konnte. Bei funktionierender Kontaktierung war das magnetische Verhalten dann jedoch stets gleich. Bei den in situ-Kontakten war zwar einerseits das elektrische Verhalten reproduzierbar und sehr gut, aber das magnetische Verhalten war nicht zufriedenstellend, da die Relaxation nicht vollst{\"a}ndig stattfand. Im Rahmen dieser Arbeit konnten die ex situ-Kontakte optimiert werden. Dabei wurde auf die Problematiken bereits existierender Proben eingegangen und es wurden verschiedene L{\"o}sungsan s{\"a}tze daf{\"u}r gefunden. So konnte z.B. gezeigt werden, dass die Haftungsprobleme haupts{\"a}chlich auf dem unsaubere Oberfl{\"a}chen zur{\"u}ckzuf{\"u}hren sind. Jede Schicht, die zwischen aufgedampfter Metallschicht und dem dotierten Halbleiter bestehen bleibt, unabh{\"a}ngig davon, ob es sich dabei um eine oxidierte Schicht, Lackreste oder eine, zum Teil verarmte Schicht handelt, beeintr{\"a}chtigt die Funktionalit{\"a}t der Kontakte. Je kleiner die Dimension der Kontakte, desto st{\"a}rker wirkt sich die unsaubere Oberfl{\"a}che aus. So konnte gezeigt werden, dass ab einer Gr{\"o}ße von ca. 500nm_500nm die Zuverl{\"a}ssigkeit der Kontakte elementar von der Reinheit der Oberfl{\"a}chen und deren Homogenit{\"a}t beeinflusst wird. Zur Abwendung dieser Komplikationen werden verschiedene L{\"o}sungsans{\"a}tze vorgeschlagen. Wird die Oberfl{\"a}che mit hochenergetischen Ionen versetzt, verarmt deren Dotierung, was zu einer massiven {\"A}nderung der Leitf{\"a}higkeit f{\"u}hrt. Daher wurden entweder v{\"o}llig andere Prozessparameter zur Reinigung eingesetzt, die den dotierten HL nicht verarmen oder einer der nasschemischen Schritte wurde so angepasst, dass die extrem verarmte Schicht der HL-Oberfl{\"a}che entfernt wurde. Die einfachsten spintronischen Bauelemente (Streifen) und magnetischen Logikelemente sowie deren Ergebnisse werden im Kapitel 4 diskutiert. Hier wurde eindeutig gezeigt, dass die Streifen bei niedrigen Stromdichten nicht v{\"o}llig uniaxial sind, w{\"a}hrend bei erh{\"o}hten Stromdichten die Uniaxialit{\"a}t immer dominanter wird. Dies war jedoch zu erwarten, da bei erh{\"o}hten Stromdichten die Temperatur auch ansteigt und da, bei erh{\"o}hter Temperatur, die biaxiale Anisotropie mit M4, die uniaxiale aber jedoch nur mit M2 abf{\"a}llt - die dominante Anisotropie wechselt folglich von biaxial zu uniaxial [2]. Im Rahmen dieser Arbeit wurden die Grundlagen gelegt, um Speicherelemente und Datenverarbeitung in einem einzigen Halbleiter (Ga,Mn)As herzustellen. Auf Basis dieser Arbeit und den dabei gewonnenen litographischen Erkentnissen wurden, in nachfolgenden Arbeiten, solche Bauelemente realisiert [3]. Spin-Kaloritronik: Wie schon Eingangs erw{\"a}hnt, wird im Allgemeinen davon ausgegangen, dass die Miniaturisierung der zuk{\"u}nftigen Elektronik weitergef{\"u}hrt werden kann. Bei stetiger Verkleinerung der Strukturen kommt es in heutigen Anwendungen zu immer gr{\"o}ßeren Problemen bei der W{\"a}rmeabfuhr. Die Folgen der Temperaturdifferenzen innerhalb der Strukturen f{\"u}hren dabei zu sog. Hotspots oder sogar Materialsch{\"a}den. Temperaturunterschiede m{\"u}ssen aber nicht nur negative Auswirkungen haben. So wurde an einem ferromagnetischen System aus Nickel, Eisen und Platin der sogenannte Spin-Seebeck-Effekt gemessen, bei dem die Elektronen in den Regionen verschiedener Temperatur unterschiedliche Spinpolarisationen zeigen [4]. Eine Batterie, die diesen spinpolarisierten Strom nutzt, k{\"o}nnte einen entscheidenden Fortschritt in der Spintronik bedeuten. Dieser Bereich der Forschung an thermoelektrischen Effekten, bei denen ferromagnetische Materialien involviert sind, wird auch „spin-caloritronics" genannt [5]. Die Kapitel 5 und 6 besch{\"a}ftigen sich mit einer neuartigen Klasse spintronischer Bauteile. wh{\"a}rend das Kapitel 5 sich mit einer neuartigen Klasse spintronischer Bauteile, f{\"u}r die von uns als Bezeichnung TAMT („tunnel anisotropic magneto thermopower") eingef{\"u}hrt wurde, besch{\"a}ftigt, wird in Kapitel 6 an einem ver{\"a}nderten Probenlayout der Nernst-Effekt nachgewiesen. Die Geometrie wurde in beiden f{\"a}llen so gew{\"a}hlt und hergestellt, dass durch die Anisotropien des (Ga,Mn)As die beiden thermoelektrische Effekte (Seebeck- und Nernst-Effekt) auf einen n+-p+-{\"U}bergang {\"u}bertragen werden konnten. Durch einen Strom, in einem mit Silizium hoch dotierten GaAs-Heizkanal, kann jeweils ein vertikaler Temperaturgradient erzeugt werden. Die hierbei entstehenden Thermospannungen wurden durch eine vollst{\"a}ndige elektrische Charaktri sierungsmessung mit Hilfe pr{\"a}ziser Lock-in-Verst{\"a}rker-Technik detektiert. Das Kapitel 5 besch{\"a}ftigt sich mit allen Bereichen, von der Idee bis hin zu Messungen und Analysen des Seebeck-Effektes an einem n-p-{\"U}bergang (TAMT). Außerdem ist ein sehr einfaches numerisches Modell dargestellt, dass den gefundenen Effekt theoretisch beschreibt. Durch die bekannten thermoelektrischen Effekte ergibt sich ein Temperaturgradient der immer zu einer Thermospannung und somit zu einem Thermostrom entlang des Gradienten f{\"u}hrt. F{\"u}r zuk{\"u}nftige Entwicklungen ist es demnach wichtig, diese Effekte zu beachten und diese bei elektrischen Messungen an Nanostrukturen als m{\"o}gliche, zus{\"a}tzliche Ursache eines Messsignals in Betracht zu ziehen. In den vorliegenden Proben ist der Seebeck-Effekt stark anisotrop, mit einem gr{\"o}ßeren Thermospannungswert f{\"u}r Magnetisierungen entlang der magnetisch harten Achsen des (Ga,Mn)As. Es wurde ein einfaches Model entwickelt, welches das Tunneln von Elektronen zwischen zwei unterschiedlich warmen Bereichen erkl{\"a}rt. Die Abh{\"a}ngigkeit des Effekts von der Temperatur des Heizkanals wurde anhand dieses Models sowohl qualitativ als auch gr{\"o}ßenordnungsm{\"a}ßig korrekt beschrieben. Die Nernst-Proben wurden von der Theorie bis zur Herstellung so entwickelt, dass in derselben Anordnung eine im (Ga,Mn)As senkrecht zum Temperaturgradienten gerichtete Spannung zus{\"a}tzlich gemessen werden konnte. Diese wurde durch den Nernst-Effekt erkl{\"a}rt. Besonders interessant war, dass die Gr{\"o}ße der Nernst-Spannung hierbei mit der Magnetisierung im (Ga,Mn)As verkn{\"u}pft ist und somit ein aus der typischen Magnetisierungsumkehr hervorgehendes Verhalten zeigt. Gegen{\"u}ber den Magnetowiderstandseffekten entsteht beim Nernst-Effekt in sogenannten Fingerprints (vgl. Kapitel 1.3.3) ein dreistufiges Farbmuster anstelle eines zweistufigen hoch-tief-Systems. Die entstehende Temperatur im Heizkanal wird jeweils durch eine longitudinale Widerstandsmessung in einem senkrecht zum Kanal gerichteten {\"a}ußeren Magnetfeld bestimmt. Die Magnetfeldabh{\"a}ngigkeit des Widerstands kommt hierbei durch den Effekt der schwachen Lokalisierung in d{\"u}nnen Filmen zustande. Zusammenfassend stellen die Magneto-Thermoelektrizit{\"a}tseffekte eine wichtige weitere Transporteigenschaft in ferromagnetischen Halbleitern dar, die mit der Magnetisierung direkt zusammenh{\"a}ngen. In dieser Arbeit wurden Thermospannungen an (Ga,Mn)As-Schichten mit vergleichsweise hoher Mangankonzentration untersucht. Allerdings sind die Thermoelektrizit{\"a}tseigenschaften zusammen mit Magneto-Widerstandsmessungen in Zukunft in der Lage, zus{\"a}tzliche Informationen {\"u}ber die Bandstruktur sowie die Ladungstr{\"a}gereigenschaften in Materialsystemen mit niedrigerem Mangangehalt, insbesondere in der N{\"a}he des Metall-Isolator-{\"U}bergangs, zu liefern. Inhalt des Anhangs ist eine ausf{\"u}hrliche Anleitung zur Optimierung der Probenherstellung bzw. der verschiedenen Bauelemente.}, subject = {Spintronik}, language = {de} } @phdthesis{Gerhard2014, author = {Gerhard, Felicitas Irene Veronika}, title = {Controlling structural and magnetic properties of epitaxial NiMnSb for application in spin torque devices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111690}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {This thesis describes the epitaxial growth of the Half-Heusler alloy NiMnSb by molecular beam epitaxy. Its structural and magnetic properties are controlled by tuning the composition and the resulting small deviation from stoichiometry. The magnetic in-plane anisotropy depends on the Mn concentration of the sample and can be controlled in both strength and orientation. This control of the magnetic anisotropy allows for growing NiMnSb layers of a given thickness and magnetic properties as requested for the design of NiMnSb-based devices. The growth and characterization of NiMnSb-ZnTe-NiMnSb heterostructures is presented - such heterostructures form an all-NiMnSb based spin-valve and are a promising basis for spin torque devices.}, subject = {Nickelverbindungen}, language = {en} } @phdthesis{Samiepour2014, author = {Samiepour, Marjan}, title = {Fabrication and characterization of CPP-GMR and spin-transfer torque induced magnetic switching}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-102226}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Even though the unique magnetic behavior for ferromagnets has been known for thousands of years, explaining this interesting phenomenon only occurred in the 20th century. It was in 1920, with the discovery of electron spin, that a clear explanation of how ferromagnets achieve their unique magnetic properties came to light. The electron carries an intrinsic electric charge and intrinsic angular momentum. Use of this property in a device was achieved in 1998 when Fert and Gru¨nberg independently found that the resistance of FM/NM/FM trilayer depended on the angle between the magnetization of the two layers. This phenomena which is called giant magnetoresistance (GMR) brought spin transfer into mainstream. This new discovery created a brand new research fi called "spintronics" or "spin based electronics" which exploits the intrinsic spin of electron. As expected spintronics delivered a new generation of magnetic devices which are currently used in magnetic disk drives and magnetic random access memories (MRAM). The potential advantages of spintronics devices are non-volatility, higher speed, increased data density and low power consumption. GMR devices are already used in industry as magnetic memories and read heads. The quality of GMR devices can be increased by developing new magnetic materials and also by going down to nanoscale. The desired characteristic properties of these new materials are higher spin polarization, higher curie temperature and better spin filtering. Half-metals are a good candidate for these devices since they are expected to have high polarization. Some examples of half-metals are Half-Heusler alloy, full Heusler alloy and Perovskite or double Perovskite oxides. The devices discussed in this thesis have NiMnSb half-Heusler alloy and permalloy as the ferromagnetic layers separated by Cu as the nonmagnetic layer. This dissertation includes mainly two parts, fabrication and characterization of nan- opillars. The layer stack used for the fabrication is Ru/Py/Cu/NiMnSb which is grown on an InP substrate with an (In,Ga)As buff by molecule beam epitaxy (MBE). A new method of fabrication using metal mask which has a higher yield of working samples over the previous method (using the resist mask) used in our group is discussed in detail. Also, the advantages of this new method and draw backs of the old method are explained thoroughly (in chapter 3). The second part (chapters 4 and 5) is focused on electrical measurements and charac- terization of the nanopillar, specially with regard to GMR and spin-transfer torque (STT) measurements. In chapter 4, the results of current perpendicular the plane giant mag- netoresistance (CPP-GMR) measurements at various temperatures and in-plane magnetic fi are presented. The dependence of CPP-GMR on bias current and shape anisotropy of the device are investigated. Results of these measurements show that the device has strong shape anisotropy. The following chapter deals with spin-transfer torque induced magnetic switching measurements done on the device. Critical current densities are on the order of 106 A/cm2, which is one order of magnitude smaller than the current industry standards. Our results show that the two possible magnetic configurations of the nanopillar (parallel and anti-parallel) have a strong dependence on the applied in-plane magnetic fi Fi- nally, four magnetic fi regimes based on the stability of the magnetic configuration (P stable, AP stable, both P and AP stable, both P and AP unstable) are identified.}, subject = {Riesenmagnetowiderstand}, language = {en} } @phdthesis{Naydenova2014, author = {Naydenova, Tsvetelina}, title = {A Study of Seebeck and Nernst effects in (Ga,Mn)As/normal semiconductor junctions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101981}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The discovery of the Giant Magneto Resistance (GMR) effect in 1988 by Albert Fert [Baib 88] and Peter Gr{\"u}nberg [Bina 89] led to a rapid development of the field of spintronics and progress in the information technology. Semiconductor based spintronics, which appeared later, offered a possibility to combine storage and processing in a single monolithic device. A direct result is reduced heat dissipation. The observation of the spin Seebeck effect by Ushida [Uchi 08] in 2008 launched an increased interest and encouraged research in the field of spin caloritronics. Spintronics is about the coupling of charge and spin transport. Spin caloritronics studies the interaction between heat and spin currents. In contrast to spintronics and its variety of applications, a particular spin-caloritronic device has not yet been demonstrated. However, many of the novel phenomena in spin caloritronics can be detected in most spintronic devices. Moreover, thermoelectric effects might have a significant influence on spintronic device operation. This will be of particular interest for this work. Additional knowledge on the principle of coupling between heat and spin currents uncovers an alternative way to control heat dissipation and promises new device functionalities. This thesis aims to further extend the knowledge on thermoelectrics in materials with strong spin-orbit coupling, in this case the prototypical ferromagnetic semiconductor (Ga,Mn)As. The study is focused on the thermoelectric / thermomagnetic effects at the interface between a normal metal and the ferromagnetic (Ga,Mn)As. In such systems, the different interfaces provide a condition for minimal phonon drag contribution to the thermal effects. This suggests that only band contributions (a diffusion transport regime) to these effects will be measured. Chapter 2 begins with an introduction on the properties of the studied material system, and basics on thermoelectrics and spin caloritronics. The characteristic anisotropies of the (Ga,Mn)As density of states (DOS) and the corresponding magnetic properties are described. The DOS and magnetic anisotropies have an impact on the transport prop- erties of the material and that results in effects like tunneling anisotropic magnetores- istance (TAMR) [Goul 04]. Some of these effects will be used later as a reference to the results from thermoelectric / thermomagnetic measurements. The Fingerprint tech- nique [Papp 07a] is also described. The method gives an opportunity to easily study the anisotropies of materials in different device geometries. Chapter 3 continues with the experimental observation of the diffusion thermopower of (Ga,Mn)As / Si-doped GaAs tunnel junction. A device geometry for measuring the diffusion thermopower is proposed. It consists of a Si - doped GaAs heating channel with a Low Temperature (LT) GaAs / (Ga,Mn)As contact (junction) in the middle of the channel. A single Ti / Au contact is fabricated on the top of the junction. For transport characterization, the device is immersed in liquid He. A heating current technique is used to create a temperature difference by local heating of the electron system on the Si:GaAs side. An AC current at low frequency is sent through the channel and it heats the electron population in it, while the junction remains at liquid He temperature (experimentally con- firmed). A temperature difference arises between the heating channel and the (Ga,Mn)As contact. As a result, a thermal (Seebeck) voltage develops across the junction, which we call tunnelling anisotropic magneto thermopower (TAMT), similar to TAMR. TAMT is detected by means of a standard lock-in technique at double the heating current frequency (at 2f ). The Seebeck voltage is found to be linear with the temperature difference. That dependence suggests a diffusion transport regime. Lattice (phonon drag) contribution to the thermovoltage, which is usually highly nonlinear with temperature, is not observed. The value of the Seebeck coefficient of the junction at 4.2 K is estimated to be 0.5 µV/K. It is about three orders of magnitude smaller than the previously reported one [Pu 06]. Subsequently, the thermal voltage is studied in external magnetic fields. It is found that the thermopower is anisotropic with the magnetization direction. The anisotropy is explained with the anisotropies of the (Ga,Mn)As contact. Further, switching events are detected in the thermopower when the magnetic field is swept from negative to positive fields. The switchings remind of a spin valve signal and is similar to the results from previous experiments on spin injection using a (Ga,Mn)As contacts in a non-local detection scheme. That shows the importance of the thermoelectric effects and their possible contribution to the spin injection measurements. A polar plot of the collected switching fields for different magnetization angles reveals a biaxial anisotropy and resembles earlier TAMR measurements of (Ga,Mn)As tunnel junction. A simple cartoon model is introduced to describe and estimate the expected thermopower of the studied junction. The model yields a Fermi level inside of the (Ga,Mn)As valence band. Moreover, the model is found to be in good agreement with the experimental results. The Nernst effect of a (Ga,Mn)As / GaAs tunnel junction is studied in Chapter 4. A modified device geometry is introduced for this purpose. Instead of a single contact on the top of the square junction, four small contacts are fabricated to detect the Nernst signal. A temperature difference is maintained by means of a heating current technique described in Chapter 3. A magnetic field is applied parallel to the device plane. A voltage drop across two opposite contacts is detected at 2f. It appears that a simple cosine function with a parameter the angle between the magnetization and the [100] crystal direction in the (Ga,Mn)As layer manages to describe this signal which is attributed to the anomalous Nernst effect (ANE) of the ferromagnetic contact. Its symmetry is different than the Seebeck effect of the junction. For the temperature range of the thermopower measurements the ANE coefficient has a linear dependence on the temperature difference (∆T). For higher ∆T, a nonlinear dependence is observed for the coefficient. The ANE coefficient is found to be several orders of magnitude smaller than any Nernst coefficient in the literature. Both the temperature difference and the size of the ANE coefficient require further studies and analysis. Switching events are present in the measured Nernst signal when the magnetic field is swept from positive to negative values. These switchings are related to the switching fields in the ferromagnetic (Ga,Mn)As. Usually, there are two states which are present in TAMR or AMR measurements - low and high resistance. Instead of that, the Nernst signal appears to have three states - high, middle and low thermomagnetic voltage. That behaviour is governed not only by the magnetization, but also by the characteristic of the Nernst geometry. Chapter 5 summarizes the main observations of this thesis and contains ideas for future work and experiments.}, subject = {Galliumarsenid}, language = {en} } @phdthesis{Fijalkowski2022, author = {Fijalkowski, Kajetan Maciej}, title = {Electronic Transport in a Magnetic Topological Insulator (V,Bi,Sb)\(_2\)Te\(_3\)}, doi = {10.25972/OPUS-28230}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282303}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This thesis focuses on investigating magneto-transport properties of a ferromagnetic topological insulator (V,Bi,Sb)2Te3. This material is most famously known for exhibiting the quantum anomalous Hall effect, a novel quantum state of matter that has opened up possibilities for potential applications in quantum metrology as a quantum standard of resistance, as well as for academic investigations into unusual magnetic properties and axion electrodynamics. All of those aspects are investigated in the thesis.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Pakkayil2017, author = {Pakkayil, Shijin Babu}, title = {Towards ferromagnet/superconductor junctions on graphene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153863}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {This thesis reports a successful fabrication and characterisation of ferromagnetic/superconductor junction (F/S) on graphene. The thesis preposes a fabrication method to produce F/S junctions on graphene which make use of ALD grown Al2O3 as the tunnel barrier for the ferromagnetic contacts. Measurements done on F/G/S/G/F suggests that by injecting spin polarised current into the superconductor, a spin imbalance is created in the quasiparticle density of states of the superconductor which then diffuses through the graphene channel. The observed characteristic curves are similar to the ones which are already reported on metallic ferromagnet/superconductor junctions where the spin imbalance is created using Zeeman splitting. Further measurements also show that the curves loose their characteristic shapes when the temperature is increased above the critical temperature (Tc) or when the external magnetic field is higher then the critical field (Hc) of the superconducting contact. But to prove conclusively and doubtlessly the existence of spin imbalance in ferromagnet/superconductor junctions on graphene, more devices have to be made and characterised preferably in a dilution refrigerator.}, subject = {Graphen}, language = {en} } @phdthesis{Martin2021, author = {Martin, Konstantin}, title = {Current-induced Magnetization Switching by a generated Spin-Orbit Torque in the 3D Topological Insulator Material HgTe}, doi = {10.25972/OPUS-24049}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240490}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Magnetic random access memory (MRAM) technology aims to replace dynamic RAM (DRAM) due to its significantly lower power consumption and non-volatility [Dong08]. During the last couple of years the commercial focus was set on spin-transfer torque MRAM (STT-MRAM) systems, where a current is pushed through a ferromagnetic (FM) free layer and a reference layer which are separated by an insulator. The free layer can be set to parallel or anti-parallel depending on the current direction [Kim11]. Unfortunately these currents have to be quite high which could lead to damages of the tunnel barrier of the magnetic tunnel junction resulting in higher power consumption as well as reliability issues. At this point a new effect, where the current is passed below the ferromagnetic layer stack, can be exploited to change the direction of the free layer magnetization. The effect is known as spin-orbit torque (SOT) and describes the transfer of angular momentum onto an adjacent magnetization either by the spin Hall effect (SHE) or inverse spin galvanic effect (iSGE) [Manchon19]. The latter describes a spin accumulation due to a current. This is similar to the process of spin accumulation in TIs, where a current corresponds to an effective spin due to spin-momentum locking [Qi11]. Thus TIs exhibit a high current-to-spin conversion rate, which makes them a promising material system for SOT experiments. Among all TIs it is HgTe, which can be reliably grown as an insulator. This thesis covers the development of a working device for SOT measurements (SOT-device) in a CdTe/CdHgTe/HgTe/CdHgTe heterostructure. It involves the development of a tunnel barrier (ZrOx) as well as the investigation of the behavior of a ferromagnetic layer stack on top of etched HgTe. The main result of this work is the successful construction and evaluation of a working SOT-device, which exhibits the up to date most efficient switching of in-plane magnetized ferromagnetic layer stacks. In order to avoid hybridization between HgTe and the adjacent ferromagnetic atoms, which would cause a breakdown of the topological surface state, it is necessary to implement a thin tunnel barrier in between the TI and free layer [Zhang16]. Aside from hybridization a tunnel barrier avoids shunting of the current, that is pushed on the surface of the HgTe/CdHgTe interface. Thus a bigger part of the current can be used for spin accumulation and, at the same time, the resistance measurement of the ferromagnetic layer stack is not perturbed. In chapter 3 the focus is set on investigating the tunneling characteristics of ZrOx on top of dry etched HgTe. Thin barriers are used as the interaction of the current generated spin and the adjacent magnetization decreases with distance. On the other hand too small insulator thicknesses lead to leakage currents which disturb heavily the measurement of the resistance of the ferromagnetic layer stack. Thus an optimum thickness of 10 ALD cycles (\(d\approx 1.6\rm\, nm\)) is determined which yields a resistance area product of \(R\cdot A \approx 3\rm\, k\Omega\mu m^{2}\). This corresponds to a tunneling resistance of \(R_{T}\approx 20\rm\, k\Omega\) over a structure surface of \(A_{T} = 0.12\rm\, \mu m^2\). Multiple samples with different thicknesses have been produced. All samples have been examined on their tunneling behavior. The resistance area product as a function of thickness shows a linear behavior on a logarithmic scale. Furthermore all working samples show non-linear I-V curves as well as parabolic dI/dV-curves. Additionally the tunneling resistance \(R_{T}\) increases with decreasing temperature. All above mentioned properties are typical for tunnel barriers which do not include pinholes [Jonsson00]. The last part of chapter 3 deals with thermal properties of HgTe. By measuring the second harmonic of a biasing AC current in the channel below the tunnel barrier it is attempted to extract the diffusion thermopower of the heated electrons. Unfortunately the measured signal showed a far superior contribution of the first harmonic. According to electric circuit simulations a small asymmetry in the barrier (penetration and leaving point of electrons) could be responsible for this behavior. A ferromagnetic layer stack, consisting of PY/Cu/CoFe, serves as a sensor for magnetization changes due to external fields and current induced spin accumulations. The layer stack exhibits a giant magnetoresistance (GMR) which has been measured by a resistance bridge. The biggest peculiarity in depositing a GMR stack on top of HgTe is that its easy axis forms along only one of the crystal axes (\((110)\) or \((1\overline{1}0)\)). The reason for this anisotropy is still unclear. Sources such as an influence of the terminating material, miscut, furrows during IBE or sputter ripples have been ruled out. It can be speculated that the surface states due to HgTe might have an influence on the development of this easy axis but this would need further investigation. A consequence of this unexpected anisotropy is that every CdTe/CdHgTe/HgTe/CdHgTe wafer has first to be characterized in SQUID in order to find the easy axis. A ferromagnetic resonance (FMR) measurement confirmed this observation. The shape of the ferromagnetic layer stack is chosen to be an ellipse in order to support the easy axis direction by shape anisotropy. Over 8 million ellipses are used to generate a SQUID signal of \(m > 10^{-5}\rm\, emu\). This is sufficient to extract the main characteristics of an average nano pillar under the influence of an external magnetic field. As in the case of bigger structures the ellipse shaped structure shows a step-like behavior. A measured minor loop confirms the existence of the irreversible anti-parallel stable magnetic state. Furthermore this state persists for both directions at \(m=0\) resulting in an anti-ferromagnetic coupling between Py and CoFe. The geometry of the SOT-device is chosen in such a way that the current induced spin aligns either parallel or anti-parallel to the effective magnetic field \(\vec{B}_{eff}=\vec{B}_{ext}+\vec{B}_{aniso}+\vec{B}_{shape}\), which acts on the pillar. Due to interaction of the spin with the adjacent magnetization of Py the magnetization direction gets changed by a torque \(\vec{T}\). In general this torque can be decomposed into two components a field-like torque \(\vec{\tau}_{FL}\) and a damping-like torque \(\vec{\tau}_{DL}\) [Manchon19]. In the case of TIs \(\vec{T}\) is additionally depending on the z-component of \(\vec{m}\) [Ndiaye17]. In our case the magnetization is lying in the sample plane (\(m_{z}=0\)) which results in \(\vec{\tau}_{DL}=0\). Thus, in the case of \(\vec{S}\parallel\left(\vec{\hat{z}}\times\vec{j}\right)\) and \(\vec{j}\parallel\vec{\hat{y}}\), the only spin dependent effective magnetic field is \(\vec{B}_{FL}=\tau_{FL}\cdot\vec{\hat{x}}\) which is lying parallel or anti-parallel to \(\vec{B}_{eff}\). The evaluation of \(\vec{B}_{FL}\) can therefore be done in the following manner. First a high \(B_{ext}\) has to be set along the easy axis of the pillar. Then \(B_{ext}\) has to be reduced just a few \(\rm\, Oe\) before the switching occurs at the magnetic field \(B_{ext,0}\). At the magnetic field \(\Delta B = B_{ext}-B_{ext,0}\approx 0.5\rm\, Oe\) the lower resistive state should be stable over a longer time range (\(10-30\rm\, min\)) in order to exclude switching due to fluctuations. Now a positive or negative current can be pushed through the channel below the pillar. For one of the two current directions the magnetization of Py switches. It is therefore not a thermal effect that drives the change of \(\vec{m}\). Current densities that are able to switch \(\vec{m}\) at small \(\Delta B\neq 0\) lie in the range of \(j\approx 10^{4}\rm\, A/cm^{2}\). In all experiments the switching efficiency \(\Delta B/j\) decreases with rising \(j\). Furthermore the efficiency as a function of \(j\) depends on the temperature as \(\Delta B/j\) values tend to be up to 20 times higher at \(T=1.8\rm\, K\) and \(j\approx 0\) than at \(T=4.2\rm\, K\). This temperature dependence suggests that switching occurs not due to Oersted fields. Furthermore the Biot-Savart fields had been calculated for four different models: an infinite long rectangular wire, two infinite planes, a full volume and two thin volume planes. Every model shows an efficiency, which is at least three times lower than the observation. The highest efficiencies in our samples show up to 10 times higher values than in heavy-metal/ferromagnets heterostructures. In contrast to measurement procedures of most other groups our method leads to direct determination of SOT parameters like the effective magnetic field \(\vec{B}_{FL}\). Other groups make use of spin-transfer FMR (ST-FMR) where they AC bias their structure and extract SOT parameters (like \(\tau_{FL}\) and \(\tau_{DL}\)) from second harmonics by fitting theoretical models. Material systems consisting of TIs and magnetic insulators (MIs) on the other hand show 10 times higher efficiencies [Khang18,Li19]. In those cases the magnetization points out of the sample plane which is conceptually different from in-plane magnetic anisotropy geometries like in our case. The greatest benefit in-plane magnetic anisotropy systems is its easy realisation [Bhatti17]. Here only an elliptical shape has to be lithographically implemented instead of conducting research on the appropriate combination of material systems that result in perpendicular magnetic anisotropies [Apalkov16]. Despite the fact that in our case only \(\vec{\tau}_{FL}\) acts as the driving force for changing \(m\) our device still exhibits the up to date highest efficiencies in the class of in-plane magnetized anisotropies of all material classes ever recorded.}, language = {en} }