@phdthesis{Birke2024, author = {Birke, Claudius B.}, title = {Low Mach and Well-Balanced Numerical Methods for Compressible Euler and Ideal MHD Equations with Gravity}, doi = {10.25972/OPUS-36330}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-363303}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Physical regimes characterized by low Mach numbers and steep stratifications pose severe challenges to standard finite volume methods. We present three new methods specifically designed to navigate these challenges by being both low Mach compliant and well-balanced. These properties are crucial for numerical methods to efficiently and accurately compute solutions in the regimes considered. First, we concentrate on the construction of an approximate Riemann solver within Godunov-type finite volume methods. A new relaxation system gives rise to a two-speed relaxation solver for the Euler equations with gravity. Derived from fundamental mathematical principles, this solver reduces the artificial dissipation in the subsonic regime and preserves hydrostatic equilibria. The solver is particularly stable as it satisfies a discrete entropy inequality, preserves positivity of density and internal energy, and suppresses checkerboard modes. The second scheme is designed to solve the equations of ideal MHD and combines different approaches. In order to deal with low Mach numbers, it makes use of a low-dissipation version of the HLLD solver and a partially implicit time discretization to relax the CFL time step constraint. A Deviation Well-Balancing method is employed to preserve a priori known magnetohydrostatic equilibria and thereby reduces the magnitude of spatial discretization errors in strongly stratified setups. The third scheme relies on an IMEX approach based on a splitting of the MHD equations. The slow scale part of the system is discretized by a time-explicit Godunov-type method, whereas the fast scale part is discretized implicitly by central finite differences. Numerical dissipation terms and CFL time step restriction of the method depend solely on the slow waves of the explicit part, making the method particularly suited for subsonic regimes. Deviation Well-Balancing ensures the preservation of a priori known magnetohydrostatic equilibria. The three schemes are applied to various numerical experiments for the compressible Euler and ideal MHD equations, demonstrating their ability to accurately simulate flows in regimes with low Mach numbers and strong stratification even on coarse grids.}, subject = {Magnetohydrodynamik}, language = {en} }