@phdthesis{Unsleber2016, author = {Unsleber, Sebastian Philipp}, title = {Festk{\"o}rperbasierte Einzelphotonenquellen als Grundbausteine der Quanteninformationstechnologie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147322}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Die vorliegende Arbeit hatte das Ziel basierend auf Halbleiternanostrukturen eine effiziente und skalierbare Quelle einzelner und ununterscheidbarer Photonen zu entwickeln. Dies ist eine Basiskomponente von zuk{\"u}nftigen quantenphysikalischen Anwendungen wie der Quantenkommunikation oder dem Quantencomputer. Diese Konzepte nutzen gezielt quantenmechanische Systeme um einerseits Kommunikation absolut abh{\"o}rsicher zu machen oder um neuartige Computer zu konstruieren, die bestimmte Aufgaben - wie die Produktzerlegung großer Zahlen - effizienter l{\"o}sen als heutige Systeme. Ein m{\"o}gliche Realisierung der Quantenkommunikation ist beispielsweise die Schl{\"u}sselverteilung zwischen zwei Parteien durch Verwendung des BB84-Protokolls. Dazu wird eine Lichtquelle ben{\"o}tigt, welche die physikalisch kleinstm{\"o}gliche Lichtmenge - ein einzelnes Photon - aussendet. Der Kommunikationskanal wird dann {\"u}ber verschiedene Polarisationszust{\"a}nde dieser Photonen gegen ein Abh{\"o}ren nach außen hin abgesichert. Da die maximale Kommunikationsdistanz aufgrund von Verlusten im Quantenkanal beschr{\"a}nkt ist, muss das Signal f{\"u}r gr{\"o}ßere Distanzen mit Hilfe eines sog. Quantenrepeaters aufbereitet werden. Ein solcher kann ebenfalls unter Verwendung von Einzelphotonenquellen realisiert werden. Das Konzept des Quantenverst{\"a}rkers stellt aber die zus{\"a}tzliche Anforderung an die Einzelphotonenquelle, dass die ausgesendeten Lichtteilchen in der Summe ihrer Eigenschaften wie Energie und Polarisation immer gleich und somit ununterscheidbar sein m{\"u}ssen. Auf Basis solcher ununterscheidbarer Photonen gibt es zudem mit dem linear optischen Quantenrechner auch m{\"o}gliche theoretische Ans{\"a}tze zur Realisierung eines Quantencomputers. Dabei kann {\"u}ber die Quanteninterferenz von ununterscheidbaren Photonen an optischen Bauteilen wie Strahlteilern ein Quanten-NOT-Gatter zur Berechnung spezieller Algorithmen realisiert werden. Als vielversprechende Kandidaten f{\"u}r eine solche Lichtquelle einzelner Photonen haben sich in den letzten Jahren Halbleiter-Quantenpunkte herauskristallisiert. Dank des festk{\"o}rperbasierten Ansatzes k{\"o}nnen diese Strukturen in komplexe photonische Umgebungen zur Erh{\"o}hung der Photonen-Extraktionseffizienz und -Emissionsrate eingebettet werden. Ziel dieser Arbeit war somit eine effiziente Quelle einzelner ununterscheidbarer Photonen zu realisieren. Im Hinblick auf die sp{\"a}tere Anwendbarkeit wurde der Fokus zudem auf die skalierbare bzw. deterministische Fabrikation der Quantenpunkt-Strukturen gelegt und zwei technologische Ans{\"a}tze - die kryogene in-situ-Lithographie und das positionierte Wachstum von Quantenpunkten - untersucht. Im ersten experimentellen Kapitel dieser Arbeit wird ein neuartiges Materialsystem vorgestellt, welches sich zur Generation einzelner Photonen eignet. Es k{\"o}nnen spektral scharfe Emissionslinien mit Linienbreiten bis knapp {\"u}ber 50 µeV aus Al\$_{0,48}\$In\$_{0,52}\$As Volumenmaterial beobachtet werden, wenn diese Schicht auf InP(111) Substraten abgeschieden wird. In Querschnitt-Rastertunnelmikroskopie-Messungen wurden ca. 16 nm große Cluster, welche eine um ungef{\"a}hr 7 \% h{\"o}here Indiumkonzentration im Vergleich zur nominellen Zusammensetzung des Volumenmaterials besitzen, gefunden. {\"U}ber die Simulation dieser Strukturen konnten diese als Quelle der spektral scharfen Emissionslinien identifiziert werden. Zudem wurde mittels Auto- und Kreuzkorrelationsmessungen nachgewiesen, dass diese Nanocluster einzelne Photonen emittieren und verschieden geladene exzitonische und biexzitonische Ladungstr{\"a}gerkomplexe binden k{\"o}nnen. Anschließend wurde der Fokus auf InGaAs-Quantenpunkte gelegt und zun{\"a}chst im Rahmen einer experimentellen und theoretischen Gemeinschaftsarbeit die Koh{\"a}renzeigenschaften eines gekoppelten Quantenpunkt-Mikrokavit{\"a}t-Systems untersucht. {\"U}ber temperaturabh{\"a}ngige Zwei-Photonen Interferenz Messungen und dem Vergleich mit einem mikroskopischen Modell des Systems konnten gezielt die Bestandteile der Quantenpunkt-Dephasierung extrahiert werden. Auf diesen Ergebnissen aufbauend wurde die gepulste, strikt resonante Anregung von Quantenpunkten als experimentelle Schl{\"u}sseltechnik etabliert. Damit konnten bei tiefen Temperaturen nahezu vollst{\"a}ndig ununterscheidbare Photonen durch eine Zwei-Photonen Interferenz Visibilit{\"a}t von {\"u}ber 98 \% nachgewiesen werden. F{\"u}r ein skalierbares und deterministisches Quantenpunkt-Bauelement ist entweder die Kontrolle {\"u}ber die Position an welcher der Quantenpunkt gewachsen wird n{\"o}tig, oder die Position an der eine Mikrokavit{\"a}t ge{\"a}tzt wird muss auf die Position eines selbstorganisiert gewachsenen Quantenpunktes abgestimmt werden. Im weiteren Verlauf werden Untersuchungen an beiden technologischen Ans{\"a}tzen durchgef{\"u}hrt. Zun{\"a}chst wurde der Fokus auf positionierte Quantenpunkte gelegt. Mittels in das Substrat ge{\"a}tzter Nanol{\"o}cher wird der Ort der Quantenpunkt-Nukleation festgelegt. Durch die ge{\"a}tzten Grenzfl{\"a}chen in Quantenpunkt-N{\"a}he entstehen jedoch auch Defektzust{\"a}nde, die negativen Einfluss auf die Koh{\"a}renz der Quantenpunkt-Emission nehmen. Deshalb wurde an diesem Typus von Quantenpunkten die strikt resonante Anregung etabliert und zum ersten Mal die koh{\"a}rente Kopplung des Exzitons an ein resonantes Lichtfeld demonstriert. Zudem konnte die deterministische Kontrolle der Exzitonbesetzung {\"u}ber den Nachweis einer Rabi-Oszillation gezeigt werden. Abschließend wird das Konzept der kryogenen in-situ-Lithographie vorgestellt. Diese erlaubt die laterale Ausrichtung der Mikrokavit{\"a}t an die Position eines selbstorganisiert gewachsenen Quantenpunktes. Damit konnte gezielt die Emission eines zuvor ausgew{\"a}hlten, spektral schmalen Quantenpunktes mit nahezu 75 \% Gesamteffizienz eingesammelt werden. Die Ununterscheidbarkeit der Quantenpunkt-Photonen war dabei mit einer Zwei-Photonen Interferenz Visibilit{\"a}t von bis zu \$\nu=(88\pm3)~\\%\$ sehr hoch. Damit wurde im Rahmen dieser Arbeit eine Einzelphotonenquelle realisiert, aus der sich sehr effizient koh{\"a}rente Photonen auskoppeln lassen, was einen wichtigen Schritt hin zur deterministischen Fabrikation von Lichtquellen f{\"u}r quantenphysikalischen Anwendungen darstellt.}, subject = {Quantenpunkt}, language = {de} } @phdthesis{Grauer2018, author = {Grauer, Stefan}, title = {Transport Phenomena in Bi\(_2\)Se\(_3\) and Related Compounds}, publisher = {Verlag Dr. Hut GmbH}, isbn = {978-3-8439-3481-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157666}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {One of the most significant technological advances in history was driven by the utilization of a new material class: semiconductors. Its most important application being the transistor, which is indispensable in our everyday life. The technological advance in the semiconductor industry, however, is about to slow down. Making transistors ever smaller to increase the performance and trying to reduce and deal with the dissipative heat will soon reach the limits dictated by quantum mechanics with Moore himself, predicting the death of his famous law in the next decade. A possible successor for semiconductor transistors is the recently discovered material class of topological insulators. A material which in its bulk is insulating but has topological protected metallic surface states or edge states at its boundary. Their electrical transport characteristics include forbidden backscattering and spin-momentum-locking with the spin of the electron being perpendicular to its momentum. Topological insulators therefore offer an opportunity for high performance devices with low dissipation, and applications in spintronic where data is stored and processed at the same point. The topological insulator Bi\(_2\)Se\(_3\) and related compounds offer relatively high energy band gaps and a rather simple band structure with a single dirac cone at the gamma point of the Brillouin zone. These characteritics make them ideal candidates to study the topological surface state in electrical transport experiments and explore its physics.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Iff2022, author = {Iff, Oliver}, title = {Implementierung und Charakterisierung von Einzelphotonenquellen in zweidimensionalen Übergangsmetall-Dichalkogeniden und deren Kopplung an optische Resonatoren}, doi = {10.25972/OPUS-28140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281404}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Schon heute bilden Einzelphotonenquellen einen wichtigen Baustein in der Photonik und Quanteninformation. Der Fokus der Forschung liegt entsprechend auf dem Finden und Charakterisieren daf{\"u}r geeigneter Materialsysteme. Konkret beschäftigt sich die vorliegende Arbeit vorwiegend mit dem Übergangsmetall-Dichalkogenid (TMDC1 ) Wolframdiselenid und seinen Eigenschaften. Diese Wahl ist durch den direkte Zugang zu Einzelphotonenquellen begr{\"u}ndet, die sich in dessen Monolagen ausbilden können. Diese Lichtquellen können {\"u}ber eine Modulation der Verspannung der Monolage gezielt aktiviert werden. Durch die, verglichen mit ihrem Volumen, riesige Kontaktfläche lassen sich Monolagen zudem mit Hilfe des Substrats, auf das sie transferiert wurden, wesentlich beeinflussen. Im Rahmen dieser Arbeit wurden Monolagen von WSe2 in unterschiedlichen Bauteilen wie zirkulare Bragg-Gittern oder vorstrukturierten, metallischen Oberflächen implementiert und die Photolumineszenz des TMDCs untersucht. Diese Arbeit belegt die Möglichkeit, Einzelphotonenquellen basierend aufWSe2 -Monolagen auf verschiedenste Weise modulieren zu können. Dank ihrer zwei- dimensionalen Geometrie lassen sie sich einfach in bestehende Strukturen integrieren oder auch in der Zukunft mit weiteren 2D-Materialien kombinieren.}, subject = {Einzelphotonenemission}, language = {de} } @phdthesis{Kiermasch2020, author = {Kiermasch, David}, title = {Charge Carrier Recombination Dynamics in Hybrid Metal Halide Perovskite Solar Cells}, doi = {10.25972/OPUS-20862}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208629}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In order to facilitate the human energy needs with renewable energy sources in the future, new concepts and ideas for the electricity generation are needed. Solar cells based on metal halide perovskite semiconductors represent a promising approach to address these demands in both single-junction and tandem configurations with existing silicon technology. Despite intensive research, however, many physical properties and the working principle of perovskite PVs are still not fully understood. In particular, charge carrier recombination losses have so far mostly been studied on pure films not embedded in a complete solar cell. This thesis aimed for the identification and quantification of charge carrier recombination dynamics in fully working devices under conditions corresponding to those under real operation. To study different PV systems, transient electrical methods, more precisely Open-Circuit Voltage Decay (OCVD), Transient Photovoltage (TPV) and Charge Extraction (CE), were applied. Whereas OCVD and TPV provide information about the recombination lifetime, CE allows to access the charge carrier density at a specific illumination intensity. The benefit of combining these different methods is that the obtained quantities can not only be related to the Voc but also to each other, thus enabling to determine also the dominant recombination mechanisms.The aim of this thesis is to contribute to a better understanding of recombination losses in fully working perovskite solar cells and the experimental techniques which are applied to determine these losses.}, subject = {Solarzelle}, language = {en} } @phdthesis{Suchomel2022, author = {Suchomel, Holger Maximilian}, title = {Entwicklung elektrooptischer Bauteile auf der Basis von Exziton-Polaritonen in Halbleiter-Mikroresonatoren}, doi = {10.25972/OPUS-27163}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-271630}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Exziton-Polaritonen (Polaritonen), hybride Quasiteilchen, die durch die starke Kopplung von Quantenfilm-Exzitonen mit Kavit{\"a}tsphotonen entstehen, stellen auf Grund ihrer vielseitigen und kontrollierbaren Eigenschaften einen vielversprechenden Kandidaten f{\"u}r die Entwicklung einer neuen Generation von nichtlinearen und integrierten elektrooptischen Bauteilen dar. Die vorliegende Arbeit besch{\"a}ftigt sich mit der Entwicklung und Untersuchung kompakter elektrooptischer Bauelemente auf der Basis von Exziton-Polaritonen in Halbleitermikrokavit{\"a}ten. Als erstes wird die Implementierung einer elektrisch angeregten, oberfl{\"a}chenemittierenden Polariton-Laserdiode vorgestellt, die ohne ein externes Magnetfeld arbeiten kann. Daf{\"u}r wird der Schichtaufbau, der Q-Faktor, das Dotierprofil und die RabiAufspaltung der Polariton-Laserdiode optimiert. Der Q-Faktor des finalen Aufbaus bel{\"a}uft sich auf Q ~ 16.000, w{\"a}hrend die Rabi-Aufspaltung im Bereich von ~ 11,0 meV liegt. Darauf aufbauend werden Signaturen der Polariton-Kondensation unter elektrischer Anregung, wie ein nichtlinearer Anstieg der Intensit{\"a}t, die Reduktion der Linienbreite und eine fortgesetzte Verschiebung der Emission zu h{\"o}heren Energien oberhalb der ersten Schwelle, demonstriert. Ferner werden die Koh{\"a}renzeigenschaften des Polariton-Kondensats mittels Interferenzspektroskopie untersucht. Basierend auf den optimierten Halbleiter-Mikroresonatoren wird eine Kontaktplattform f{\"u}r die elektrische Anregung ein- und zweidimensionaler Gitterstrukturen entwickelt. Dazu wird die Bandstrukturbildung eines Quadrat- und Graphen-Gitters unter elektrischer Anregung im linearen Regime untersucht und mit den Ergebnissen der optischen Charakterisierung verglichen. Die erhaltenen Dispersionen lassen sich durch das zugeh{\"o}rige Tight-Binding-Modell beschreiben. Ferner wird auch eine elektrisch induzierte Nichtlinearit{\"a}t in der Emission demonstriert. Die untersuchte Laser-Mode liegt auf der H{\"o}he des unteren Flachbandes und an der Position der Γ-Punkte in der zweiten Brillouin-Zone. Die zugeh{\"o}rige Modenstruktur weist die erwartete Kagome-Symmetrie auf. Abschließend wird die Bandstrukturbildung eines SSH-Gitters mit eingebautem Defekt unter elektrischer Anregung untersucht und einige Eigenschaften des topologisch gesch{\"u}tzten Defektzustandes gezeigt. Dazu geh{\"o}rt vor allem die Ausbildung der lokalisierten Defektmode in der Mitte der S-Bandl{\"u}cke. Die erhaltenen Ergebnisse stellen einen wichtigen Schritt in der Realisierung eines elektrisch betriebenen topologischen Polariton-Lasers dar. Abschließend wird ein elektrooptisches Bauteil auf der Basis von Polaritonen in einem Mikrodrahtresonator vorgestellt, in dem sich die Propagation eines PolaritonKondensats mittels eines elektrostatischen Feldes kontrollieren l{\"a}sst. Das Funktionsprinzip des Polariton-Schalters beruht auf der Kombination einer elektrostatischen Potentialsenke unterhalb des Kontaktes und der damit verbundenen erh{\"o}hten ExzitonIonisationsrate. Der Schaltvorgang wird sowohl qualitativ als auch quantitativ analysiert und die Erhaltenen Ergebnisse durch die Modellierung des Systems {\"u}ber die GrossPitaevskii-Gleichung beschrieben. Zus{\"a}tzlich wird ein negativer differentieller Widerstand und ein bistabiles Verhalten in der Strom-Spannungs-Charakteristik in Abh{\"a}ngigkeit von der Ladungstr{\"a}gerdichte im Kontaktbereich beobachtet. Dieses Verhalten wird auf gegenseitig konkurrierende Kondensats-Zust{\"a}nde innerhalb der Potentialsenke und deren Besetzung und damit direkt auf den r{\"a}umlichen Freiheitsgrad der PolaritonZust{\"a}nde zur{\"u}ckgef{\"u}hrt.}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} } @phdthesis{Lundt2019, author = {Lundt, Nils}, title = {Strong light-matter coupling with 2D materials}, doi = {10.25972/OPUS-18733}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187335}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {This publication is dedicated to investigate strong light-matter coupling with excitons in 2D materials. This work starts with an introduction to the fundamentals of excitons in 2D materials, microcavities and strong coupling in chapter 2. The experimental methods used in this work are explained in detail in chapter 3. Chapter 4 covers basic investigations that help to select appropriate materials and cavities for the following experiments. In chapter 5, results on the formation of exciton-polaritons in various materials and cavity designs are presented. Chapter 6 covers studies on the spin-valley properties of exciton-polaritons including effects such as valley polarization, valley coherence and valley-dependent polariton propagation. Finally, the formation of hybrid-polaritons and their condensation are presented in chapter 7.}, subject = {Exziton-Polariton}, language = {en} }