@phdthesis{Klein2021, author = {Klein, Thomas}, title = {Establishing an in vitro disease model for Fabry Disease using patient specific induced pluripotent stem cell-derived sensory neurons}, doi = {10.25972/OPUS-19970}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199705}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Fabry disease (FD) is an X-linked lysosomal storage disorder caused by deficiency of the α-galactosidase A (GLA), leading to intracellular accumulations of globotriaosylceramide (Gb3). Acral burning pain, which can be triggered by heat, fever or physical activity is an early hallmark of FD and greatly reduces patients' quality of life. The pathophysiology of FD pain is unknown and research is hindered by the limited in vivo availability of suitable human biomaterial. To overcome this obstacle, we generated induced pluripotent stem cells (iPSC) from one female and two male patients with a differing pain phenotype, and developed a refined differentiation protocol for sensory neurons to increase reliability and survival of these neurons, serving as an in vitro disease model. Neurons were characterized for the correct neuronal subtype using immunocytochemistry, gene expression analysis, and for their functionality using electrophysiological measurements. iPSC and sensory neurons from the male patients showed Gb3 accumulations mimicking the disease phenotype, whereas no Gb3 depositions were detected in sensory neurons derived from the female cell line, likely caused by a skewed X-chromosomal inactivation in favor of healthy GLA. Using super-resolution imaging techniques we showed that Gb3 is localized in neuronal lysosomes of male patients and in a first experiment using dSTORM microscopy we were able to visualize the neuronal membrane in great detail. To test our disease model, we treated the neurons with enzyme replacement therapy (ERT) and analyzed its effect on the cellular Gb3 load, which was reduced in the male FD-lines, compared to non-treated cells. We also identified time-dependent differences of Gb3 accumulations, of which some seemed to be resistant to ERT. We also used confocal Ca2+ imaging to investigate spontaneous neuronal network activity, but analysis of the dataset proofed to be difficult, nonetheless showing a high potential for further investigations. We revealed that neurons from a patient with pain pain are more easily excitable, compared to cells from a patient without pain and a healthy control. We provide evidence for the potential of patient-specific iPSC to generate a neuronal in vitro disease model, showing the typical molecular FD phenotype, responding to treatment, and pointing towards underlying electrophysiological mechanisms causing different pain phenotypes. Our sensory neurons are suitable for state-of-the-art microscopy techniques, opening new possibilities for an in-depth analysis of cellular changes, caused by pathological Gb3 accumulations. Taken together, our system can easily be used to investigate the effect of the different mutations of GLA on a functional and a molecular level in affected neurons.}, subject = {Induzierte pluripotente Stammzelle}, language = {en} } @phdthesis{Karl2017, author = {Karl, Franziska}, title = {The role of miR-21 in the pathophysiology of neuropathic pain using the model of B7-H1 knockout mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156004}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The impact of microRNA (miRNA) as key players in the regulation of immune and neuronal gene expression and their role as master switches in the pathophysiology of neuropathic pain is increasingly recognized. miR-21 is a promising candidate that could be linked to the immune and the nociceptive system. To further investigate the pathophysiological role of miR-21 in neuropathic pain, we assesed mice deficient of B7 homolog 1 (B7-H1 ko), a protein with suppressive effect on inflammatory responses. B7-H1 ko mice and wildtype littermates (WT) of three different age-groups, young (8 weeks), middle-aged (6 months), and old (12 months) received a spared nerve injury (SNI). Thermal withdrawal latencies and mechanical withdrawal thresholds were determined. Further, we investigated anxiety-, depression-like and cognitive behavior. Quantitative real time PCR was used to determine miR-21 relative expression in peripheral nerves, dorsal root ganglia and white blood cells (WBC) at distinct time points after SNI. Na{\"i}ve B7-H1 ko mice showed mechanical hyposensitivity with increasing age. Young and middle-aged B7-H1 ko mice displayed lower mechanical withdrawal thresholds compared to WT mice. From day three after SNI both genotypes developed mechanical and heat hypersensitivity, without intergroup differences. As supported by the results of three behavioral tests, no relevant differences were found for anxiety-like behavior after SNI in B7-H1 ko and WT mice. Also, there was no indication of depression-like behavior after SNI or any effect of SNI on cognition in both genotypes. The injured nerves of B7-H1 ko and WT mice showed higher miR-21 expression and invasion of macrophages and T cells 7 days after SNI without intergroup differences. Perineurial miR-21 inhibitor injection reversed SNI-induced mechanical and heat hypersensitivity in old B7-H1 ko and WT mice. This study reveals that reduced mechanical thresholds and heat withdrawal latencies are associated with miR-21 induction in the tibial and common peroneal nerve after SNI, which can be reversed by perineurial injection of a miR-21 inhibitor. Contrary to expectations, miR-21 expression levels were not higher in B7-H1 ko compared to WT mice. Thus, the B7-H1 ko mouse may be of minor importance for the study of miR-21 related pain. However, these results spot the contribution of miR-21 in the pathophysiology of neuropathic pain and emphasize the crucial role of miRNA in the regulation of neuronal and immune circuits that contribute to neuropathic pain.}, subject = {neuropathic pain}, language = {en} } @phdthesis{Hofmann2018, author = {Hofmann, Lukas}, title = {The α-galactosidase A deficient mouse as a model for Fabry disease and the effect of Gb3 depositions on peripheral nociceptive ion channel function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158513}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Fabry disease (FD) is an X-linked lysosomal storage disorder with intracellular accumulation of globotriaosylceramide (Gb3) due to α-galactosidase A deficiency. We studied α-galactosidase A knockout mice (GLA KO) as a model for sensory disturbance and pain in FD. Pain associated behavior of young (3 months) and old (≥18 months) GLA KO mice and wildtype (WT) littermates in an inflammatory and a neuropathic pain model was investigated. Furthermore, affective and cognitive behavior was assessed in the na{\"i}ve state and in an inflammatory pain model. Gene and protein expression of pain associated ion channels and Gb3 accumulation in dorsal root ganglion (DRG) neurons was determined. We also performed patch clamp analysis on cultivated DRG neurons and human embryonic kidney 293 (HEK) cells expressing voltage-gated-sodium channel 1.7 (Nav1.7) as an in vitro model of FD. Intracellular Gb3 deposits were modulated using shRNA silencing of α-galactosidase A. After intraplantar injection of complete Freund`s adjuvant (CFA) and chronic constriction injury (CCI) of the right sciatic nerve, old GLA KO mice did not develop heat and mechanical hypersensitivity in contrast to young GLA KO and old WT mice. Additionally, we found no relevant differences between genotypes and age-groups in affective and cognitive behavior in the na{\"i}ve state and after CFA injection. Gene and protein expression analysis provided no explanation for the observed sensory impairment. However, cultured DRG neurons of old GLA KO mice revealed a marked decrease of sodium and Ih-currents compared to young GLA KO and old WT mice. DRG neurons of old GLA KO mice displayed substantial intracellular accumulation of Gb3 compared to young GLA KO and old WT mice. Similar to cultured neurons, sodium currents were also decreased in HEK cells treated with shRNA and consecutively increased intracellular Gb3 deposits compared to the control condition, but could be rescued by treatment with agalsidase-alpha. Our study unveils that, similar to patients with FD, GLA KO mice display age-dependent sensory deficits. However, contrary to patients, GLA KO mice are also protected from hypersensitivity induced by inflammation and nerve lesion due to Gb3-dependent and reversible reduction of neuronal sodium- and Ih-currents. Our data provide evidence for direct Gb3-dependent ion channel impairment in sensory DRG neurons as a potential contributor to sensory dysfunction and pain in FD.}, subject = {Fabry-Krankheit}, language = {en} } @phdthesis{Reinhold2016, author = {Reinhold, Ann-Kristin}, title = {New players in neuropathic pain? microRNA expression in dorsal root ganglia and differential transcriptional profiling in primary sensory neurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140314}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Neuropathic pain, caused by neuronal damage, is a severely impairing mostly chronic condition. Its underlying molecular mechanisms have not yet been thoroughly understood in their variety. In this doctoral thesis, I investigated the role of microRNAs (miRNAs) in a murine model of peripheral neuropathic pain. MiRNAs are small, non-coding RNAs known to play a crucial role in post-transcriptional gene regulation, mainly in cell proliferation and differentiation. Initially, expression patterns in affected dorsal root ganglia (DRG) at different time points after setting a peripheral nerve lesion were studied. DRG showed an increasingly differential expression pattern over the course of one week. Interestingly, a similar effect, albeit to a smaller extent, was observed in corresponding contralateral ganglia. Five miRNA (miR-124, miR-137, miR-183, miR-27b, and miR-505) were further analysed. qPCR, in situ hybridization, and bioinformatical analysis point towards a role for miR-137 and -183 in neuropathic pain as both were downregulated. Furthermore, miR-137 is shown to be specific for non-peptidergic non-myelinated nociceptors (C fibres) in DRG. As the ganglia consist of highly heterocellular tissue, I also developed a neuron-specific approach. Primarily damaged neurons were separated from intact adjacent neurons using fluorescence-activated cell-sorting and their gene expression pattern was analysed using a microarray. Thereby, not only were information obtained about mRNA expression in both groups but, by bioinformatical tools, also inferences on miRNA involvement. The general expression pattern was consistent with previous findings. Still, several genes were found differentially expressed that had not been described in this context before. Among these are corticoliberin or cation-regulating proteins like Otopetrin1. Bioinformatical data conformed, in part, to results from whole DRG, e.g. they implied a down-regulation of miR-124, -137, and -183. However, these results were not significant. In summary, I found that a) miRNA expression in DRG is influenced by nerve lesions typical of neuropathic pain and that b) these changes develop simultaneously to over-expression of galanin, a marker for neuronal damage. Furthermore, several miRNAs (miR-183, -137) exhibit distinct expression patterns in whole-DRG as well as in neuron-specific approaches. Therefore, further investigation of their possible role in initiation and maintenance of neuropathic pain seems promising. Finally, the differential expression of genes like Corticoliberin or Otopetrin 1, previously not described in neuropathic pain, has already resulted in follow-up projects.}, subject = {Schmerzforschung}, language = {en} } @phdthesis{Leinders2016, author = {Leinders, Mathias}, title = {microRNAs in chronic pain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144395}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Chronic pain is a common problem in clinical practice, not well understood clinically, and frequently tough to satisfactorily diagnose. Because the pathophysiology is so complex, finding effective treatments for people with chronic pain has been overall less than successful and typically reduced to an unsatisfactory trial-and-error process, all of which translates into a significant burden to society. Knowledge of the mechanisms underlying the development of chronic pain, and moreover why some patients experience pain and others not, may aid in developing specific treatment regimens. Although nerve injuries are major contributors to pain chronification, they cannot explain the entire phenomenon. Considerable research has underscored the importance of the immune system for the development and maintenance of chronic pain, albeit the exact factors regulating inflammatory reactions remain unclear. Understanding the putative molecular and cellular regulator switches of inflammatory reactions will open novel opportunities for immune modulatory analgesics with putatively higher specificity and less adverse effects. It has become clear that small, non- coding RNA molecules known as microRNAs are in fact potent regulators of many thousands of genes and possibly cross-communicate between cellular pathways in multiple systems acting as so-called "master-switches". Aberrant expression of miRNAs is now implicated in numerous disorders, including nerve injuries as well as in inflammatory processes. Moreover, compelling evidence supports the idea that miRNAs also regulate pain, and in analogy to the oncology field aid in the differential diagnosis of disease subtypes. In fact, first reports describing characteristic miRNA expression profiles in blood or cerebrospinal fluid of patients with distinct pain conditions are starting to emerge, however evidence linking specific miRNA expression profiles to specific pain disorders is still insufficient. The present thesis aimed at first, identifying specific miRNA signatures in two distinct chronic pain conditions, namely peripheral neuropathies of different etiologies and fibromyalgia syndrome. Second, it aimed at identifying miRNA profiles to better understand potential factors that differentiate painful from painless neuropathies and third, study the mechanistic role of miRNAs in the pathophysiology of pain, to pave the way for new druggable targets. Three studies were conducted in order to identify miRNA expression signatures that are characteristic for the given chronic pain disorder. The first study measured expression of miR-21, miR-146a and miR-155 in white blood cells, skin and nerve biopsies of patients with peripheral neuropathies. It shows that peripheral neuropathies of different etiologies are associated with increased peripheral miR-21 and miR-146a, but decreased miR-155 expression. More importantly, it was shown that painful neuropathies have increased sural nerve miR-21 and miR-155 expression, but reduced miR-146a and miR-155 expression in distal skin of painful neuropathies. These results point towards the potential use of miRNAs profiles to stratify painful neuropathies. The seconds study extends these findings and first analyzed the role of miR-132-3p in patients and subsequently in an animal model of neuropathic pain. Interestingly, miR-132-3p was upregulated in white blood cells and sural nerve biopsies of patients with painful neuropathies and in animals after spared nerve injury. Pharmacologically modulating the expression of miR-132-3p dose-dependently reversed pain behavior and pain aversion, indicating the pro-nociceptive effect of miR-132-3p in chronic pain. This study thus demonstrates the potential analgesic impact by modulating miRNA expression. Fibromyalgia is associated with chronic widespread pain and, at least in a subgroup, impairment in small nerve fiber morphology and function. Interestingly, the disease probably comprises subgroups with different underlying pathomechanisms. In accordance with this notion, the third study shows that fibromyalgia is associated with both aberrant white blood cell and cutaneous miRNA expression. Being the first of its kind, this study identified miR-let-7d and its downstream target IGF-1R as potential culprit for impaired small nerve fiber homeostasis in a subset of patients with decreased intra-epidermal nerve fiber density. The work presented in this thesis is a substantial contribution towards the goal of better characterizing chronic pain based on miRNA expression signatures and thus pave the way for new druggable targets.}, subject = {miRNS}, language = {en} } @phdthesis{Werner2014, author = {Werner, Christian}, title = {Effect of autoantibodies targeting amphiphysin or glutamate decarboxylase 65 on synaptic transmission of GABAergic neurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-105648}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The number of newly detected autoantibodies (AB) targeting synaptic proteins in neurological disorders of the central nervous system (CNS) is steadily increasing. Direct interactions of AB with their target antigens have been shown in first studies but the exact pathomecha-nisms for most of the already discovered AB are still unclear. The present study investigates pathophysiological mechanisms of AB-fractions that are associated with the enigmatic CNS disease Stiff person syndrome (SPS) and target the synaptically located proteins amphiphysin or glutamate decarboxylase 65 (GAD65). In the first part of the project, effects of AB to the presynaptic endocytic protein amphiphysin were investigated. Ultrastructural investigations of spinal cord presynaptic boutons in an es-tablished in-vivo passive-transfer model after intrathecal application of human anti-amphiphysin AB showed a defect of endocytosis. This defect was apparent at high synaptic activity and was characterized by reduction of the synaptic vesicle pool, clathrin coated vesi-cles (CCVs), and endosome like structures (ELS) in comparison to controls. Molecular inves-tigation of presynaptic boutons in cultured murine hippocampal neurons with dSTORM microscopy after pretreatment with AB to amphiphysin revealed that marker proteins involved in vesicle exocytosis (synaptobrevin 2 and synaptobrevin 7) had an altered expression in GA-BAergic presynapses. Endophilin, a direct binding partner of amphiphysin also displayed a disturbed expression pattern. Together, these results point towards an anti-amphiphysin AB-induced defective organization in GABAergic synapses and a presumably compensatory rearrangement of proteins responsible for CME. In the second part, functional consequences of SPS patient derived IgG fractions containing AB to GAD65, the rate limiting enzyme for GABA synthesis, were investigated by patch clamp electrophysiology and immunohistology. GABAergic neurotransmission at low and high activity as well as short term plasticity appeared normal but miniature synaptic potentials showed an enhanced frequency with constant amplitudes. SPS patient IgG after preabsorption of GAD65-AB using recombinant GAD65 still showed specific synaptic binding to neu-rons and brain slices supporting the hypothesis that additional, not yet characterized AB are present in patient IgG responsible for the exclusive effect on frequency of miniature potentials. In conclusion, the present thesis uncovered basal pathophysiological mechanisms underlying paraneoplastic SPS induced by AB to amphiphysin leading to disturbed presynaptic architec-ture. In idiopathic SPS, the hypothesis of a direct pathophysiological role of AB to GAD65 was not supported and additional IgG AB are suspected to induce distinct synaptic malfunction.}, subject = {Autoaggressionskrankheit}, language = {en} } @phdthesis{Real2015, author = {Real, Ruben}, title = {Living with severe motor impairments - from consciousness to quality of life}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138562}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The impact of acquired severe motor impairments is pervasive and may lead to a complete loss of communication and voluntary motor control, rendering the patient behaviourally unresponsive. In routine clinical care it may thus be unclear, whether some of these patients are even conscious. Given that finding a cure is unlikely, care focuses on providing the best possible quality of life (QoL), and knowing its predictors might contribute to that aim. Patients who still can communicate often report a high QoL, and several predictors have been identified. However, many instruments used to assess QoL require at least residual verbal and motor abilities. Thus, a method to assess QoL independent of these requirements is desirable. In addition, many instruments assume QoL to be temporarily stable, and little information is available on predictors of instantaneous QoL, i.e. QoL as it fluctuates from moment to moment throughout the day.}, subject = {Myatrophische Lateralsklerose}, language = {en} } @phdthesis{Dietz2022, author = {Dietz, Christopher Andreas}, title = {Distinguishing phenotypes of Complex Regional Pain Syndrome}, doi = {10.25972/OPUS-25632}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256327}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This work investigated phenotypes of complex regional pain syndrome (CRPS) with special interest in sensory abnormalities. Quantitative sensory testing (QST) was used to assess sensory function. In addition, clinical and sensory differences of fracture and CRPS patients were addressed. Finally, the longitudinal outcome of CRPS patients was part of this thesis.}, language = {en} } @phdthesis{Karch2022, author = {Karch, Katharina}, title = {Mapping and Neutralization of Antibodies against Neurofascin, Contactin 1, Contactin associated protein 1 and Cortactin}, doi = {10.25972/OPUS-28022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280223}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Immune-mediated polyneuropathies like chronic inflammatory demyelinating polyradiculoneuropathy or Guillain-Barr{\´e} syndrome are rare diseases of the peripheral nervous system. A subgroup of patients harbors autoantibodies against nodal or paranodal antigens, associated with a distinct phenotype and treatment response. In a part of patients with pathologic paranodal or nodal immunoreactivity the autoantigens remain difficult or impossible to determine owing to limitations of the used detection approach - usually ELISAs (enzyme-linked-immunosorbent-assays) - and incomplete knowledge of the possible autoantigens. Due to their high-throughput, low sample consumption and high sensitivity as well as the possibility to display many putative nodal and paranodal autoantigens simultaneously, peptide microarray-based approaches are prime candidates for the discovery of novel autoantigens, point-of-care diagnostics and, in addition, monitoring of pathologic autoimmune response. Current applications of peptide microarrays are however limited by high false-positive rates and the associated need for detailed follow-up studies and validation. Here, robust peptide microarray-based detection of antibodies and the efficient validation of binding signals by on-chip neutralization is demonstrated. First, autoantigens were displayed as overlapping peptide libraries in microarray format. Copies of the biochips were used for the fine mapping of antibody epitopes. Next, binding signals were validated by antibody neutralization in solution. Since neutralizing peptides are obtained in the process of microarray fabrications, neither throughput nor costs are significantly altered. Similar in-situ validation approaches could contribute to future autoantibody characterization and detection methods as well as to therapeutic research. Areas of application could be expanded to any autoimmune-mediated neurological disease as a long-term vision.}, subject = {Microarray}, language = {en} } @phdthesis{Aster2023, author = {Aster, Hans-Christoph}, title = {Characterization of subgroups in fibromyalgia syndrome}, doi = {10.25972/OPUS-31304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313049}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The present cumulative dissertation summarizes three clinical studies, which examine subgroups of patients within the fibromyalgia syndrome (FMS). FMS entails chronic pain and associated symptoms, and its pathophysiology is incompletely understood (1). Previous studies show that there is a subgroup of patients with FMS with objective histological pathology of the small nerve fibers of the peripheral nervous system (PNS). Another subgroup of FMS patients does not show any signs of pathological changes of the small nerve fibers. The aim of this dissertation was to compare FMS patients with healthy controls, and these two FMS subgroups for differences in the central nervous system (CNS) in order to explore possible interactions between PNS and the CNS. Regarding the CNS, differences of FMS patients with healthy controls have already been found in studies with small sample sizes, but no subgroups have yet been identified. Another aim of this thesis was to test whether the subgroups show a different response to different classes of pain medication. The methods used in this thesis are structural and functional magnetic resonance imaging (MRI), magnetic resonance diffusion imaging and magnetic resonance spectroscopy. For the evaluation of clinical symptoms, we used standardized questionnaires. The subgroups with and without pathologies of the PNS were determined by skin biopsies of the right thigh and lower leg based on the intraepidermal nerve fiber density (IENFD) of the small nerve fibers. 1) In the first MRI study, 43 female patients with the diagnosis of FMS and 40 healthy control subjects, matched in age and body mass index, were examined with different MRI sequences. Cortical thickness was investigated by structural T1 imaging, white matter integrity by diffusion tensor imaging and functional connectivity within neuronal networks by functional resting state MRI. Compared to the controls, FMS patients had a lower cortical volume in bilateral frontotemporoparietal regions and the left insula, but a higher cortical volume in the left pericalcarine cortex. Compared to the subgroup without PNS pathology, the subgroup with PNS pathology had lower cortical volume in both pericalcarine cortices. Diffusion tensor imaging revealed an increased fractional anisotropy (FA) of FMS patients in corticospinal pathways such as the corona radiata, but also in regions of the limbic systems such as the fornix and cingulum. Subgroup comparison again revealed lower mean FA values of the posterior thalamic radiation and the posterior limb of the left internal capsule in the subgroup with PNS pathology. In the functional connectivity analysis FMS patients, compared to controls, showed a hypoconnectivity between the right median frontal gyrus and the posterior cerebellum and the right crus cerebellum, respectively. In the subgroup comparisons, the subgroup with PNS pathology showed a hyperconnectivity between both inferior frontal gyri, the right posterior parietal cortex and the right angular gyrus. In summary, these results show that differences in brain morphology and functional connectivity exist between FMS patients with and without PNS pathology. These differences were not associated with symptom duration or severity and, in some cases, have not yet been described in the context of FMS. The differences in brain morphology and connectivity between subgroups could also lead to a differential response to treatment with centrally acting drugs. Further imaging studies with FMS patients should take into account this heterogeneity of FMS patient cohorts. 2) Following the results from the first MRI study, drug therapies of FMS patients and their treatment response were compared between PNS subgroups. As there is no licensed drug for FMS in Europe, the German S3 guideline recommends amitriptyline, duloxetine and pregabalin for temporary use. In order to examine the current drug use in FMS patients in Germany on a cross-sectional basis, 156 patients with FMS were systematically interviewed. The drugs most frequently used to treat pain in FMS were non-steroidal anti-inflammatory drugs (NSAIDs) (28.9\%), metamizole (15.4\%) and amitriptyline (8.8\%). Pain relief assessed by patients on a numerical rating scale from 0-10 averaged 2.2 points for NSAIDs, 2.0 for metamizole and 1.5 for amitriptyline. Drugs that were discontinued for lack of efficacy and not for side effects were acetaminophen (100\%), flupirtine (91.7\%), selective serotonin reuptake inhibitors (81.8\%), NSAIDs (83.7\%) and weak opioids (74.1\%). Patients were divided into subgroups with and without PNS pathology as determined by skin biopsies. We found no differences in drug use and effect between the subgroups. Taken together, these results show that many FMS patients take medication that is not in accordance with the guidelines. The reduction of symptoms was best achieved with metamizole and NSAIDs. Further longitudinal studies on medication in FMS are necessary to obtain clearer treatment recommendations. 3) Derived from previous pharmacological and imaging studies (with smaller case numbers), there is a hypothesis in the FMS literature that hyperreactivity of the insular cortex may have an impact on FMS. The hyperreactivity seems to be due to an increased concentration of the excitatory neurotransmitter glutamate in the insular cortex of FMS patients. The hypothesis is supported by magnetic resonance spectroscopy studies with small number of cases, as well as results from pharmacological studies with glutamate-inhibiting medication. Studies from animal models have also shown that an artificially induced increase in glutamate in the insular cortex can lead to reduced skin innervation. Therefore, the aim of this study was to compare glutamate and GABA concentrations in the insular cortex of FMS patients with those of healthy controls using magnetic resonance imaging. There was no significant difference of both neurotransmitters between the groups. In addition, there was no correlation between the neurotransmitter concentrations and the severity of clinical symptoms. There were also no differences in neurotransmitter concentrations between the subgroups with and without PNS pathology. In conclusion, our study could not show any evidence of a correlation of glutamate and GABA concentrations with the symptoms of FMS or the pathogenesis of subgroups with PNS pathologies.}, subject = {Fibromyalgie}, language = {en} }