@phdthesis{Mayer2019, author = {Mayer, Rafaela}, title = {OxPAPC as an endogenous agonist of TRPA1 channels on nociceptors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175890}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Non-steroidal antiinflammatory drugs are most commonly used for inflammatory and postoperative pain. But they lack effectiveness and specificity, leading to severe side effects, like gastric ulcers, asthma and severe bleeding. Oxidized 1-palmitoyl-2-arachinidonoyl-sn-glycero-3-phosphocholine (OxPAPC) plays an important role in inflammatory pain. PAPC is a common phosphatidylcholine of membranes, which can be oxidized by reactive oxygen species. In preliminary experiments, our group found that local injection of OxPAPC in rat paws induces hyperalgesia. In this study we examined the effect of OxPAPC on transient receptor potential A1 (TRPA1), an ion channel expressed in C-fiber neurons. Furthermore, we investigated if intracellular cysteine residues of TRPA1 were necessary for agonist-channel-interactions and if a subsequent TRPA1 activation could be prevented by OxPAPC scavengers. To answer these questions, we performed calcium imaging using HEK-293 cells stably expressing hTRPA1, or transiently expressing the triple mutant channel hTRPA1-3C and na{\"i}ve DRG neurons. Cells were incubated with the ratiometric, fluorescent dye Fura-2/AM and stimulated with OxPAPC. The change of light emission after excitation with 340 and 380 nm wavelengths allowed conclusions regarding changes of intracellular calcium concentrations after TRPA1 activation. In our investigation we proved evidence that OxPAPC activates TRPA1, which caused a flow of calcium ions into the cytoplasm. The TRPA1-specific channel blocker HC-030031 eliminated this agonist-induced response. TRPA1-3C was not completely sensitive to OxPAPC. The peptide D-4F and the monoclonal antibody E06 neutralized OxPAPC-induced TRPA1 activation. In this work, the importance of OxPAPC as a key mediator of inflammatory pain and as a promising target for drug design is highlighted. Our results indicate that TRPA1 activation by OxPAPC involves cysteine-dependent mechanisms, but there are other, cysteine-independent activation mechanisms as well. Potential pharmaceuticals for the treatment of inflammatory pain are D-4F and E06, whose efficiency has recently been confirmed in the animal model by our research group.}, subject = {Schmerzforschung}, language = {en} } @phdthesis{Kloka2019, author = {Kloka, Jan Andreas}, title = {Endogene Lipide als neues Behandlungstarget im TRPA1-vermittelten Entz{\"u}ndungsschmerz}, doi = {10.25972/OPUS-18084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180844}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {For nociceptive wound pain, the transient receptor potential channel(TRP) mediated calcium influx is essential. Reactive oxygen species (ROS) and their downstream oxidation products such as 4-hydroxynonenal activate the ankyrin 1 homologue TRPA1 in vivo and in vitro. The calcium imaging experiments performed in this study were carried out on stably with TRPA1 and TRPV1 transfected HEK-293 cells and spinal dorsal root ganglion neurons to further understand the mechanistic correlations of nociceptive pain development in inflammatory wound pain. E06, a monoclonal autoantibody (mAb) against oxidized phosphatidylcholine (OxPC) and D-4F, a mimetic peptide of the structural protein apolipoprotein A-I of high density lipoproteins (HDL) were previously used as a diagnostic tools and novel compounds in atherosclerosis. In this study, E06 mAb and D-4F peptide, both, reduced the TRPA1-mediated calcium influx in vitro caused by lipid peroxidation products (OxPL) such as 4-HNE and reactive oxygen species such as H2O2. In addition, we discovered that neither E06 mAb nor D-4F showed a calcium influx-relevant interaction with the Transient Receptor Potential Channel Vanillin 1 (TRPV1) activator capsaicin or the TRPV1 channel itself. Taken together, E06 mAb and D-4F peptide are two promising substances to reduce inflammatory pain and local pain relief.}, subject = {Entz{\"u}ndung}, language = {de} } @phdthesis{Schulte2023, author = {Schulte, Annemarie}, title = {\(In\) \(vitro\) reprogramming of glial cells from adult dorsal root ganglia into nociceptor-like neurons}, doi = {10.25972/OPUS-30311}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303110}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Plexus injury often occurs after motor vehicle accidents and results in lifelong disability with severe neuropathic pain. Surgical treatment can partially restore motor functions, but sensory loss and neuropathic pain persist. Regenerative medicine concepts, such as cell replacement therapies for restoring dorsal root ganglia (DRG) function, set high expectations. However, up to now, it is unclear which DRG cell types are affected by nerve injury and can be targeted in regenerative medicine approaches. This study followed the hypothesis that satellite glial cells (SGCs) might be a suitable endogenous cell source for regenerative medicine concepts in the DRG. SGCs originate from the same neural crest-derived cell lineage as sensory neurons, making them attractive for neural repair strategies in the peripheral nervous system. Our hypothesis was investigated on three levels of experimentation. First, we asked whether adult SGCs have the potential of sensory neuron precursors and can be reprogrammed into sensory neurons in vitro. We found that adult mouse DRG harbor SGC-like cells that can still dedifferentiate into progenitor-like cells. Surprisingly, expression of the early developmental transcription factors Neurog1 and Neurog2 was sufficient to induce neuronal and glial cell phenotypes. In the presence of nerve growth factor, induced neurons developed a nociceptor-like phenotype expressing functional nociceptor markers, such as the ion channels TrpA1, TrpV1 and NaV1.9. In a second set of experiments, we used a rat model for peripheral nerve injury to look for changes in the DRG cell composition. Using an unbiased deep learning-based approach for cell analysis, we found that cellular plasticity responses after nerve injury activate SGCs in the whole DRG. However, neither injury-induced neuronal death nor gliosis was observed. Finally, we asked whether a severe nerve injury changed the cell composition in the human DRG. For this, a cohort of 13 patients with brachial plexus injury was investigated. Surprisingly, in about half of all patients, the injury-affected DRG showed no characteristic DRG tissue. The complete entity of neurons, satellite cells, and axons was lost and fully replaced by mesodermal/connective tissue. In the other half of the patients, the basic cellular entity of the DRG was well preserved. Objective deep learning-based analysis of large-scale bioimages of the "intact" DRG showed no loss of neurons and no signs of gliosis. This study suggests that concepts for regenerative medicine for restoring DRG function need at least two translational research directions: reafferentation of existing DRG units or full replacement of the entire multicellular DRG structure. For DRG replacement, SGCs of the adult DRG are an attractive endogenous cell source, as the multicellular DRG units could possibly be rebuilt by transdifferentiating neural crest-derived sensory progenitor cells into peripheral sensory neurons and glial cells using Neurog1 and Neurog2.}, subject = {Spinalganglion}, language = {en} } @phdthesis{Hugo2023, author = {Hugo, Julian}, title = {'Signal-close-to-noise' calcium activity reflects neuronal excitability}, doi = {10.25972/OPUS-29260}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-292605}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Chronic pain conditions are a major reason for the utilization of the health care system. Inflammatory pain states can persist facilitated by peripheral sensitization of nociceptors. The voltage-gated sodium channel 1.9 (NaV1.9) is an important regulator of neuronal excitability and is involved in inflammation-induced pain hypersensitivity. Recently, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine (OxPAPC) was identified as a mediator of acute inflammatory pain and persistent hyperalgesia, suggesting an involvement in proalgesic cascades and peripheral sensitization. Peripheral sensitization implies an increase in neuronal excitability. This thesis aims to characterize spontaneous calcium activity in neuronal compartments as a proxy to investigate neuronal excitability, making use of the computational tool Neural Activity Cubic (NA3). NA3 allows automated calcium activity event detection of signal-close-to-noise calcium activity and evaluation of neuronal activity states. Additionally, the influence of OxPAPC and NaV1.9 on the excitability of murine dorsal root ganglion (DRG) neurons and the effect of OxPAPC on the response of DRG neurons towards other inflammatory mediators (prostaglandin E2, histamine, and bradykinin) is investigated. Using calcium imaging, the presence of spontaneous calcium activity in murine DRG neurons was established. NA3 was used to quantify this spontaneous calcium activity, which revealed decreased activity counts in axons and somata of NaV1.9 knockout (KO) neurons compared to wildtype (WT). Incubation of WT DRG neurons with OxPAPC before calcium imaging did not show altered activity counts compared to controls. OxPAPC incubation also did not modify the response of DRG neurons treated with inflammatory mediators. However, the variance ratio computed by NA3 conclusively allowed to determine neuronal activity states. In conclusion, my findings indicate an important function of NaV1.9 in determining the neuronal excitability of DRG neurons in resting states. OxPAPC exposition does not influence neuronal excitability nor sensitizes neurons for other inflammatory mediators. This evidence reduces the primary mechanism of OxPAPC-induced hyperalgesia to acute effects. Importantly, it was possible to establish an approach for unbiased excitability quantification of DRG neurons by calcium activity event detection and calcium trace variance analysis by NA3. It was possible to show that signal-close-to-noise calcium activity reflects neuronal excitability states.}, subject = {Entz{\"u}ndung}, language = {en} }