@phdthesis{Wiesner2020, author = {Wiesner, Miriam}, title = {Stem Cell-based Adipose Tissue Engineering - Engineering of Prevascularized Adipose Tissue Constructs In Vitro \& Investigation on Gap Junctional Intercellular Communication in Adipose-derived Stem Cells}, doi = {10.25972/OPUS-18500}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-185005}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In reconstructive and plastic surgery, there exists a growing demand of adequate tissue implants, since currently available strategies for autologous transplantation are limited by complications including transplant failure and donor site morbidity. By developing in vitro and in vivo autologous substitutes for defective tissue sites, adipose tissue engineering can address these challenges, although there are several obstacles to overcome. One of the major limitations is the sufficient vascularization of in vitro engineered large constructs that remains crucial and demanding for functional tissues. Decellularized jejunal segments may represent a suitable scaffolding system with preexisting capillary structures that can be repopulated with human microvascular endothelial cells (hMVECs), and a luminal matrix applicable for the adipogenic differentiation of human adipose-derived stem cells (hASCs). Hence, co-culture of these cells in jejunal segments, utilizing a custom-made bioreactor system, was characterized in terms of vascularization and adipose tissue development. Substantial adipogenesis of hASCs was demonstrated within the jejunal lumen in contrast to non-induced controls, and the increase of key adipogenic markers was verified over time upon induction. The development of major extracellular matrix components of mature adipose tissue, such as laminin and collagen IV, was shown within the scaffold in induced samples. Successful reseeding of the vascular network with hMVECs was demonstrated in long-term culture and co-localization of vascular structures and adipogenically differentiated hASCs was observed. Therefore, these results represent a novel approach for in vitro engineering of vascularized adipose tissue constructs that warrants further investigations in preclinical studies. Another still existing obstacle in adipose tissue engineering is the insufficient knowledge about the applied cells, for instance the understanding of how cells can be optimally expanded and differentiated for successful engineering of tissue transplants. Even though hASCs can be easily isolated from liposuction of abdominal fat depots, yielding low donor site morbidity, huge numbers of cells are required to entirely seed complex and large 3D matrices or scaffolds. Thus, cells need to be large-scale expanded in vitro on the premise of not losing their differentiation capacity caused by replicative aging. Accordingly, an improved differentiation of hASCs in adipose tissue engineering approaches remains still desirable since most engineered constructs exhibit an inhomogeneous differentiation pattern. For mesenchymal stem cells (MSCs), it has been shown that growth factor application can lead to a significant improvement of both proliferation and differentiation capacity. Especially basic fibroblast growth factor (bFGF) represents a potent mitogen for MSCs, while maintaining or even promoting their osteogenic, chondrogenic and adipogenic differentiation potential. As there are currently different contradictory information present in literature about the applied bFGF concentration and the explicit effect of bFGF on ASC differentiation, here, the effect of bFGF on hASC proliferation and differentiation capacity was investigated at different concentrations and time points in 2D culture. Preculture of hASCs with bFGF prior to adipogenic induction showed a remarkable effect, whereas administration of bFGF during culture did not improve adipogenic differentiation capacity. Furthermore, the observations indicated as mode of action an impact of this preculture on cell proliferation capacity, resulting in increased cellular density at the time of adipogenic induction. The difference in cell density at this time point appeared to be pivotal for increased adipogenic capacity of the cells, which was confirmed in a further experiment employing different seeding densities. Interestingly, furthermore, the obtained results suggested a cell-cell contact-mediated mechanism positively influencing adipogenic differentiation. As a consequence, subsequently, studies were conducted focusing on intercellular communication of these cells, which has hardly been investigated to date. Despite the multitude of literature on the differentiation capacity of ASCs, little is reported about the physiological properties contributing to and controlling the process of lineage differentiation. Direct intercellular communication between adjacent cells via gap junctions has been shown to modulate differentiation processes in other cell types, with connexin 43 (Cx43) being the most abundant isoform of the gap junction-forming connexins. Thus, in the present study we focused on the expression of Cx43 and gap junctional intercellular communication (GJIC) in hASCs, and its significance for adipogenic differentiation of these cells. Cx43 expression in hASCs was demonstrated histologically and on the gene and protein expression level and was shown to be greatly positively influenced by cell seeding density. Functionality of gap junctions was proven by dye transfer analysis in growth medium. Adipogenic differentiation of hASCs was shown to be also distinctly elevated at higher cell seeding densities. Inhibition of GJIC by 18α-glycyrrhetinic acid significantly compromised adipogenic differentiation, as demonstrated by histology, triglyceride quantification, and adipogenic marker gene expression. Flow cytometry analysis showed a lower proportion of cells undergoing adipogenesis when GJIC was inhibited, further indicating the importance of GJIC in the differentiation process. Altogether, these results demonstrate the impact of direct cell-cell communication via gap junctions on the adipogenic differentiation process of hASCs and may contribute to further integrate direct intercellular crosstalk in rationales for tissue engineering approaches.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{WeyhmuellerReboredo2014, author = {Weyhm{\"u}ller Reboredo, Jenny}, title = {Tissue Engineering eines Meniskus - Vom Biomaterial zum Implantat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108477}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Der Meniskus, ein scheibenf{\"o}rmiger Faserknorpel, spielt im Kniegelenk eine bedeutende Rolle, weil er Kr{\"a}fte und Druck im Kniegelenk gleichm{\"a}ßig verteilt, St{\"o}ße d{\"a}mpft sowie der Kraft{\"u}bertragung und Stabilisierung dient. Durch die Entfernung des Gewebes, der sogenannten Totalmeniskektomie, nach einer Meniskusverletzung oder einem Riss, ver{\"a}ndern sich die mechanischen Eigenschaften des Gelenks stark und verursachen durch die erh{\"o}hte Belastung der Gelenkfl{\"a}chen Arthrose. Arthrose ist weltweit die H{\"a}ufigste aller Gelenkerkrankungen. Der Erhalt der k{\"o}rperlichen Leistungsf{\"a}higkeit und Mobilit{\"a}t bis ins hohe Alter sowie die Bewahrung der Gesundheit von Herz-Kreislauf- und Stoffwechselorganen z{\"a}hlen aufgrund des demografischen Wandels zu den großen medizinischen Herausforderungen. Die Erkrankung des muskuloskelettalen Systems stellte 2010 im Bundesgebiet die am h{\"a}ufigsten vorkommende Krankheitsart dar. W{\"a}hrend Risse in den {\"a}ußeren Teilen des Meniskus aufgrund des Anschlusses an das Blutgef{\"a}ßsystem spontan heilen k{\"o}nnen, k{\"o}nnen sie dies in tieferen Zonen nicht. Durch die begrenzte Heilungsf{\"a}higkeit des Knorpels bleibt langfristig der Einsatz eines Ersatzgewebes die einzige therapeutische Alternative. In der vorliegenden Arbeit wurde als therapeutische Alternative erfolgreich ein vaskularisiertes Meniskusersatzgewebe mit Methoden des Tissue Engineering entwickelt. Es soll in Zukunft als Implantat Verwendung finden. Tissue Engineering ist ein interdisziplin{\"a}res Forschungsfeld, in dem Gewebe außerhalb des K{\"o}rpers generiert werden. Schl{\"u}sselkomponenten sind Zellen, die aus einem Organismus isoliert werden, und Tr{\"a}gerstrukturen, die mit Zellen besiedelt werden. Die Biomaterialien geben den Zellen eine geeignete Umgebung, die die Extrazellul{\"a}re Matrix (EZM) ersetzen soll, um die Funktion der Zellen beizubehalten, eigene Matrix zu bilden. Zum Erhalt eines funktionelles Gewebes werden oftmals dynamische Kultursysteme, sogenannte Bioreaktoren, verwendet, die nat{\"u}rliche Stimuli wie beispielsweise den Blutfluss oder mechanische Kompressionskr{\"a}fte w{\"a}hrend der in vitro Reifungsphase des Gewebes, zur Verf{\"u}gung stellen. Das Gewebekonstrukt wurde auf Basis nat{\"u}rlicher Biomaterialien aufgebaut, unter Verwendung ausschließlich prim{\"a}rer Zellen, die sp{\"a}ter direkt vom Patienten gewonnen werden k{\"o}nnen und damit Abstoßungsreaktionen auszuschließen sind. Da der Meniskus teilvaskularisiert ist und die in vivo Situation des Gewebes bestm{\"o}glich nachgebaut werden sollte, wurden Konstrukte mit mehreren Zelltypen, sogenannte Ko-Kulturen aufgebaut. Neben mikrovaskul{\"a}ren Endothelzellen (mvEZ) und Meniskuszellen (MZ) erfolgten Versuche mit mesenchymalen Stammzellen (MSZ). Zur Bereitstellung einer zelltypspezifischen Matrixumgebung, diente den mvEZ ein St{\"u}ck Schweinedarm mit azellularisierten Gef{\"a}ßstrukturen (BioVaSc®) und den MZ diente eine geeig- nete Kollagenmatrix (Kollagen Typ I Hydrogel). Die Validierung und Charakterisierung des aufgebauten 3D Meniskuskonstrukts, welches in einem dynamischen Perfusions-Bioreaktorsystem kultiviert wurde, erfolgte mit knorpeltypischen Matrixmarkern wie Aggrekan, Kollagen Typ I, II und X sowie mit den Transkriptionsfaktoren RunX2 und Sox9, die in der Knorpelentstehung von großer Bedeutung sind. Zus{\"a}tzlich erfolgten Auswertungen mit endothelzellspezifischen Markern wie vWF, CD31 und VEGF, um die Vaskularisierung im Konstrukt nachzuweisen. Analysiert wurden auch die Zellvitalit{\"a}ten in den Konstrukten. Aufgrund einer nur geringen Verf{\"u}gbarkeit von MZ wurden Kulturans{\"a}tze mit alternativen Zellquellen, den MSZ, durchgef{\"u}hrt. Daf{\"u}r erfolgte zun{\"a}chst deren Isolation und Charakterisierung und die Auswahl einer geeigneten 3D Kollagenmatrix. Die beste Zellintegration der MSZ konnte auf einer eigens hergestellten elektrogesponnenen Matrix beobachtet werden. Die Matrix besteht aus zwei unterschiedlichen Kollagentypen, die auf insgesamt f{\"u}nf Schichten verteilt sind. Die Fasern besitzen weiter unterschiedliche Ausrichtungen. W{\"a}hrend die Kollagen Typ I Fasern in den {\"a}ußeren Schichten keiner Ausrichtung zugeh{\"o}ren, liegen die Kollagen Typ II Fasern in der mittleren Schicht parallel zueinander. Der native Meniskus war f{\"u}r den Aufbau einer solchen Kollagen-Tr{\"a}gerstruktur das nat{\"u}rliche Vorbild, das imitiert werden sollte. Nach der Besiedelung der Matrix mit MSZ, konnte eine Integration der Zellen bereits nach vier Tagen bis in die Mittelschicht sowie eine spontane chondrogene Differenzierung nach einer insgesamt dreiw{\"o}chigen Kultivierung gezeigt werden. Das Biomaterial stellt in Hinblick auf die Differenzierung der Zellen ohne die Zugabe von Wachstumsfaktoren eine relevante Bedeutung f{\"u}r klinische Studien dar. Zur Kultivierung des 3D Meniskuskonstrukts wurde ein Bioreaktor entwickelt. Mit diesem k{\"o}nnen neben Perfusion der Gef{\"a}ßsysteme zus{\"a}tzlich Kompressionskr{\"a}fte sowie Scherspannungen auf das Ersatzgewebe appliziert und die Differenzierung von MZ bzw. MSZ w{\"a}hrend der in vitro Kultur {\"u}ber mechanische Reize stimuliert werden. Ein anderes Anwendungsfeld f{\"u}r den neuartigen Bioreaktor ist seine Verwendung als Pr{\"u}ftestsystem f{\"u}r die Optimierung und Qualit{\"a}tssicherung von Gewebekonstrukten.}, subject = {Tissue Engineering}, language = {de} } @phdthesis{Weigel2019, author = {Weigel, Tobias Maximilian}, title = {Entwicklung von 3D-Herzschrittmacher-Elektroden auf Basis von Kohlenstoffnanofasern}, doi = {10.25972/OPUS-17636}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176362}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Herzschrittmachersysteme sind eine weitverbreitete M{\"o}glichkeit Herz-Kreislauf-Erkrankungen zu behandeln. Wegen der nat{\"u}rlichen Reaktion des Immunsystems auf Fremdk{\"o}rper, erfolgt aber eine fortschreitende Verkapselung der Herzschrittmacherelektrode. Die Folge ist eine ansteigende Verminderung der Stimulationseffizienz durch Erh{\"o}hung der Anregungsschwelle. Die Integration der Elektrode in das Gewebe ist dabei mangelhaft und wird bestimmt durch Implantateigenschaften wie Gr{\"o}ße, Flexibilit{\"a}t und Dimensionalit{\"a}t. Um die Integration zu verbessern, stellen dreidimensionale (3D) bzw. gewebeartige Elektroden eine Alternative zu den derzeit verwendeten planaren Metallelektroden dar. Zur Entwicklung einer leitf{\"a}higen, 3D und faserf{\"o}rmigen Elektrode wurden in dieser Arbeit Kohlenstoff-Nanofaser-Scaffolds {\"u}ber Elektrospinnen hergestellt. Durch die Modifikation des Faserger{\"u}stes mit Natriumchlorid (NaCl) w{\"a}hrend der Scaffoldherstellung, konnte das Fasernetzwerk aufgelockert und Poren generiert werden. Die Kohlenstofffaser-Elektroden zeigten einen effizienten Energie{\"u}bertrag, welcher vergleichbar mit heutigen Titannitrid (TiN) -Elektroden ist. Die Auflockerung des Fasergewebes hatte eine verbesserte Flexibilit{\"a}t des Faserscaffolds zu Folge. Neben der Flexibilit{\"a}t, konnte auch die Infiltration von Zellen in das por{\"o}se Faserscaffold erheblich verbessert werden. Dabei konnten Fibroblasten durch das gesamte Scaffold migrieren. Die Kompatibilit{\"a}t mit kardialen Zellen, die Grundvoraussetzung von Herzschrittmacherelektroden, wurde in vitro nachgewiesen. Durch die Kombination aus dem 3D-Elektrodenger{\"u}st mit einer Co-Kultur aus humanen Kardiomyozyten, mesenchymalen Stammzellen und Fibroblasten, erfolgte eine Einbettung der Elektrode in funktionelles kardiales Gewebe. Dadurch konnte ein lebender Gewebe-Elektroden-Hybrid generiert werden, welcher m{\"o}glicherweise die Elektrode vor Immunzellen in vivo abschirmen kann. Eine Zusammenf{\"u}hrung der hybriden Elektrode mit einen Tissue-Engineerten humanen kardialen Patch in vitro, f{\"u}hrte zu Bildung einer nahtlosen Elektronik-Gewebe-Schnittstelle. Die fusionierte Einheit wurde abschließend auf ihre mechanische Belastbarkeit getestet und konnte {\"u}ber einen Elektroden-Anschluss elektrisch stimuliert werden.}, subject = {Herzschrittmacher}, language = {de} } @phdthesis{Waltermann2021, author = {Waltermann, Leopold-Maximilian Johannes}, title = {Charakterisierung und Standardisierung eines in-vitro Modells der oralen Mukosa f{\"u}r die pr{\"a}klinische Forschung}, doi = {10.25972/OPUS-22203}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222032}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Bisherige per Tissue Engineering hergestellte Testsysteme der Mundschleimhaut basieren in der Regel auf allogenen und teils dysplastischen Keratinozyten. Dies schm{\"a}lert die Aussagekraft der gewonnenen Ergebnisse hinsichtlich des Anspruchs, Nativgewebe bestm{\"o}glich nachzubilden. In der vorliegenden Arbeit sollte daher ein am Lehrstuhl f{\"u}r Tissue Engineering und Regenerative Medizin entwickeltes Protokoll zur Herstellung dreidimensionaler epidermaler Oralmukosa{\"a}quivalente auf Basis autologer Keratinozyten auf seine Eigenschaften und Einsatzm{\"o}glichkeit als in-vitro Testsystem untersucht werden. Nach erfolgreicher Isolierung und Kultivierung im Monolayer konnten insgesamt 420 Modelle zu drei verschiedenen Zeitpunkten (Passagen) aufgebaut werden. Die Untersuchung von Histologie, Viabilit{\"a}t und Barrierefunktion mittels MTT, TEER und Natriumfluoresceinpermeabilit{\"a}t konnte einen suffizienten Aufbau von verhorntem, mehrschichtigen oralen Plattenepithel nachweisen. Gleichzeitig konnte eine Abnahme der Epithelqualit{\"a}t mit steigendem Keratinozytenalter festgestellt werden. Eine sich anschließende Untersuchung von 14 Cytokeratinen sowie Apoptosemarkern per effizienzkorrigierter und normalisierter RT-qPCR konnte die {\"U}berlegenheit der dreidimensionalen autologen Oralmukosa{\"a}quivalente gegen{\"u}ber der zweidimensionalen Monolayerkultur auf Genebene zeigen.}, subject = {Tissue Engineering}, language = {de} } @phdthesis{vonderAssengebWeiss2021, author = {von der Assen [geb. Weiß], Katrin Barbara}, title = {Markierung von humanen mesenchymalen Stammzellen mit f{\"u}r die Magnet-Partikel-Spektroskopie geeigneten Eisenoxidnanopartikeln, Untersuchung des Zellverhaltens in dreidimensionaler Umgebung und nicht-invasive Analyse mittels Raman-Spektroskopie}, doi = {10.25972/OPUS-21909}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219095}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Stem cell research has already been challenged for years by the question how to design tissues or even whole organs in vitro. Human mesenchymal stem cells (hMSC) seem to be very promising for this task as they can be extracted in many cases directly from the recipient. Thus potential graft rejections are avoided. For further research on the behaviour of stem cells in vivo it is essential to be able to track them non-invasively. This is for example possible by Magnetic Particle Imaging (MPI). For this purpose stem cells have to be labelled with a suitable substance, for example with superparamagnetic iron oxide nanoparticles (SPION). Presently there are no SPION approved by FDA or EMA that are able to enter hMSC without transfection agent (TA). Therefore the aim of this dissertation was to identify at least one SPION that possesses an optimal interaction with hMSC and can be tracked by MPI as well as by Raman-Spectroscopy. Furthermore the identified SPION should be detectable for a longer period of time and should not have any influence on hMSC. This dissertation was performed within the framework of the EU-wide `IDEA-project´. hMSC have been labelled with the iron oxide nanoparticles M4E, M4F, M4F2 and M3A-PDL in varying concentrations. For M3A-PDL and M4E examinations were done with concentrations of 0.5 mg/ml in standard cell culture as well as in a three-dimensional environment on a matrix of small intestinal submucosae (SIS-ser). Furthermore chondrogenic differentiation of M4E labelled hMSC was examined. Additionally Magnetic Particle Spectroscopy (MPS) and Raman-Spectroscopy were used as non-invasive detection systems. Histologically SPION uptake was proven by Prussian blue staining. Cell viability and proliferation were examined by Trypan blue staining and Ki67 antibody staining. In order to prove that also labelled cells proliferate, a special staining protocol combining Prussian blue and immunohistochemical stainings was established. The success of chondrogenic differentiation was histologically verified by Alcian blue staining, Aggrecan and Collagen II antibody staining. It could be demonstrated, that M4E has a very good cell-particle interaction when used for labelling hMSC. In contrast to M3A, which is only taken up into hMSC when covered by a TA, M4E can be used without TA. Both particles do not influence cell viability or proliferation. M4F and M4F2 are not suitable to lable hMSC. SPION could be detected at least for four weeks after labelling in a three-dimensional environment which is significantly longer than the maximum detection time of two weeks in cell culture. Chondrogenic differentiation is influenced by cell labelling with 0.5 mg/ml M4E. M3A-PDL can be detected by MPS. Raman-Spectroscopy is suitable to differentiate between M3A-PDL labelled and unlabelled hMSC. This dissertation has been able to identify an iron oxide nanoparticle with an excellent cell-particle interaction that allows intense cell labelling without TA and can be detected by MPS. In further studies at the institute it could already be shown that Raman-Spectroscopy can differentiate also between M4E labelled and unlabelled cells. However, chondrogenic differentiation of hMSC was inhibited in this dissertation. In literature several authors came to the conclusion that there is a dose-dependent inhibition of differentiation. Therefore further experiments are necessary to find out whether inhibition of differentiation might be less immanent when using smaller SPION concentrations. Additionally it should be evaluated if smaller SPION concentrations remain detectable by MPS for several weeks. Finally further studies should be done in testing systems that are more similar to the situation in vivo. Such systems are for example the dynamic environment of a BioVaSc-TERM®. This is important to make better predictions of the behaviour of labelled hMSC in vivo.}, subject = {Stammzellforschung}, language = {de} } @phdthesis{Tabisz2017, author = {Tabisz, Barbara}, title = {Site Directed Immobilization of BMP-2: Two Approaches for the Production of Osteoinductive Scaffolds}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153766}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Bone fractures typically heal without surgical intervention. However, pathological situations exist which impede the healing process resulting in so-called non-union fractures. Such fractures are nowadays treated with scaffold material being introduced into the defect area. These scaffolds can be doped with osteogenic factors, such as bone morphogenetic protein (BMP)2. BMP2 belongs to the most osteogenic growth factors known to date. Its medical use, efficiency and safety have been approved by FDA for certain applications. Currently, BMP2 is distributed with a stabilizing scaffold, which is simply soaked with the growth factor. Due to fast release kinetics supraphysiological high doses of BMP2 are required which are causally associated with severe side effects observed in certain applications being most harmful in the area of the cervical spine. These side-effects include inflammation, swelling and breathing problems, leading to disastrous consequences or secondary surgical interventions. Since it could be shown that a retardation of BMP2 release from the scaffold resulted in superior bone forming properties in vivo, it seems obvious to further reduce this release to a minimum. This can be achieved by covalent coupling which in the past was already elaborated using mainly classical EDC/NHS chemistry. Using this technique coupling of the protein occurs non-site-directedly leading mainly to an unpredictable product outcome with variable osteogenic activities. In order to improve the reproducibility of scaffold functionalization by BMP2 we created variants one of which contains a unique unnatural amino acid substitution within the mature polypeptide sequence (BMP2-K3Plk) and another, BMP2-A2C, in which an N-terminal alanine has been substituted by cysteine. These modifications enable site-specific and covalent immobilization of BMP2 e.g. onto polymeric beads. Both proteins were expressed in E. coli, renatured and purified by cation-exchange chromatography. Both variants were extensively analyzed in terms of purity and biological activity which was tested by in vitro interaction analyses as well as in cell based assays. Both proteins could be successfully coupled to polymeric beads. The different BMP2 functionalized beads were shown to interact with the ectodomain of the type I receptor BMPR-IA in vitro indicating that the biological activity of both BMP2 variants retained upon coupling. Both functionalized beads induced osteogenic differentiation C2C12 cells but only of those cells which have been in close contact to the particular beads. This strongly indicates that the BMP2 variant are indeed covalently coupled and not just adsorbed. We claim that we have developed a system for a site-specific and covalent immobilization of BMP-2 onto solid scaffolds, potentially eliminating the necessity of high-dose scaffold loading. Since immobilized proteins are protected from removal by extracellular fluids, their activities now rely mainly on the half-life of the used scaffold and the rate of proteolytic degradation. Assuming that due to prolonged times much lower loading capacities might be required we propose that the immobilization strategy employed in this work may be further refined and optimized to replace the currently used BMP2-containing medical products.}, subject = {Protein chemistry}, language = {en} } @phdthesis{Stoeckhert2019, author = {St{\"o}ckhert, Franziska}, title = {Biokompatibilit{\"a}tsmessungen, Anwendung und histologische Untersuchung eines Kreuzbandtransplantats aus Kollagen-I basiertem Biomaterial am Tiermodell}, doi = {10.25972/OPUS-19250}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192501}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Ziel der vorliegenden Arbeit war es, die Biokompatibilit{\"a}t von Kollagen I-basierten ACL-Konstrukten in-vitro und in-vivo zu {\"u}berpr{\"u}fen. Zudem erfolgte eine histologische Charakterisierung der Konstrukte nach sechsw{\"o}chiger bzw. sechsmonatiger Versuchslaufzeit im Minipig-Tiermodell. Das Kollagen I wurde durch eine neuartige Methode aus Rattenschw{\"a}nzen isoliert und zu einem Implantat geknotet und gewickelt. Die Fasern wurden mittels Proliferationsmessung, Proteinbestimmung, Zellz{\"a}hlung und Zellmorphologie auf in-vitro-Biokompatibilit{\"a}t getestet. Hier zeigte sich eine gute Biokompatibilit{\"a}t sowohl f{\"u}r γ-sterilisierte Fasern als auch f{\"u}r nicht sterilisierte Fasern. In der Sterilit{\"a}ts{\"u}berpr{\"u}fung waren nach Anpassung des Sterilisationsverfahrens weder Bakterien- noch Pilzwachstum nachweisbar. Diese Ergebnisse sind vergleichbar mit vielf{\"a}ltigen Studien zur Biokompatibilit{\"a}t von Kollagen, in denen jeweils gute Zellviabilit{\"a}t und -proliferation im direkten oder indirekten Kontakt mit Kollagen gezeigt werden konnte. Anschließend wurde das Konstrukt im Tierversuch direkt im Kniegelenk als vorderer Kreuzbandersatz implantiert. Nach Ablauf der Standzeit und Explantation der Kniegelenke wurden Paraffinschnittpr{\"a}parate der Implantate sowie Paraffinschnittpr{\"a}parate und Kunststoffschnittpr{\"a}parate der ossa femora angefertigt und durchlichtmikroskopisch deskriptiv ausgewertet. Zus{\"a}tzlich wurden die immunhistochemischen F{\"a}rbungen Kollagen I des Schweins und der Ratte und Faktor VIII angefertigt, wobei in der Faktor VIII-F{\"a}rbung zus{\"a}tzlich eine quantitative Auswertung der Gef{\"a}ßzahl vorgenommen wurde. Es wurde in der Kollagenf{\"a}rbung ein Ersatz des Rattenkollagens durch das Schweinekollagen einhergehend mit einer hohen Zellzahl gezeigt. Eine synoviale Deckschicht und eine fortschreitende Vaskularisierung, sowie Form und Anordnung der Zellen zeigten Vorg{\"a}nge des Remodeling. Innerhalb von 6 Monaten nahm die Vaskularisierung zu und neu gebildeter Geflechtknochen verengte die Bohrkan{\"a}le. Die Knochen-Implantat-Heilung war im Bohrkanal durch Sharpey´sche Fasern gekennzeichnet. Am Tunnelausgang fanden sich von sechs Wochen zu sechs Monaten Hinweise auf die fortschreitende Entwicklung einer direkten Bandinsertion. Diese Ergebnisse entsprechen weitgehend den in der Literatur beschriebenen Remodelingvorg{\"a}ngen bei Studien zum Thema Kreuzbandersatz. Die beginnende direkte Bandinsertion spricht f{\"u}r eine gute Fixation und die Einheilung beg{\"u}nstigende Eigenschaften des Implantates. Dies ist ein geeigneter Ansatz f{\"u}r weitere Untersuchungen. Von Seiten der Biokompatibilit{\"a}t und der Integration des Gewebes ist das Implantat zum Kreuzbandersatz geeignet. Es bleibt abzuwarten, inwieweit die erforderlichen mechanischen Eigenschaften erreicht werden k{\"o}nnen.}, subject = {Kollagen}, language = {de} } @phdthesis{Siverino2020, author = {Siverino, Claudia}, title = {Induction of ectopic bone formation by site directed immobilized BMP2 variants \(in\) \(vivo\)}, doi = {10.25972/OPUS-16935}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169359}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In contrast to common bone fractures, critical size bone defects are unable to self-regenerate and therefore external sources for bone replacement are needed. Currently, the gold standard to treat critical size bone fractures, resulting from diseases, trauma or surgical interventions, is the use of autologous bone transplantation that is associated with several drawbacks such as postoperative pain, increased loss of blood during surgery and extended operative time. The field of bone tissue engineering focuses on the combination of biomaterials and growth factors to circumvent these adverse events and thereby to improve critical size bone defects treatment. To this aim, a promising approach is represented by using a collagen sponge soaked with one of the most powerful osteoinductive proteins, the bone morphogenetic protein 2 (BMP2). After the approval by the Food and Drug Administration (FDA), BMP2 was used to successfully treat several severe bone defects. However, the use of BMP2 delivery systems is associated with severe side effects such as inflammation, swelling, ectopic bone formation outside of the site of implantation and breathing problems if implanted in the area of the cervical spine. The occurrence of severe side effects is related to the supraphysiological amounts of the applied protein at the implantation site. The BMP2 is typically adsorbed into the scaffold and diffuses rapidly after implantation. Therefore, intensive research has been conducted to improve the protein's retention ability, since a prolonged entrapment of the BMP2 at the implantation site would induce superior bone formation in vivo due to a minimized protein release. By controlling the release from newly designed materials or changing the protein immobilization methods, it seems possible to improve the osteoinductive properties of the resulting BMP2-functionalized scaffolds. The combination of biocompatible and biodegradable scaffolds functionalized with a covalently immobilized protein such as BMP2 would constitute a new alternative in bone tissue engineering by eliminating the aforementioned severe side effects. One of the most common immobilization techniques is represented by the so-called EDC/NHS chemistry. This coupling technique allows covalent biding of the growth factor but in a non-site direct manner, thus producing an implant with uncontrollable and unpredictable osteogenic activities. Therefore, the generation of BMP2 variants harboring functional groups that allow a site-directed immobilization to the scaffold, would enable the production of implants with reproducible osteogenic activity. The new BMP2 variants harbor an artificial amino acid at a specific position of the mature polypeptide sequence. The presence of the unnatural amino acid allows to use particular covalent immobilization techniques in a highly specific and site directed manner. The two selected BMP2 variants, BMP2 E83Plk and BMP2 E83Azide, were expressed in E. coli, renatured and purified by cation exchange chromatography. The final products were intensively analyzed in terms of purity and biological activity in vitro. The two BMP2 variants enabled the application of different coupling techniques and verify the possible options for site directed immobilization to the scaffold. Intensive analyses on the possible side effects caused by the coupling reactions and on the quantification of the coupled protein were performed. Both click chemistry reactions showed high reaction efficacies when the BMP2 variants were coupled to functionalized fluorophores. Quantification by ELISA and scintillation counting of radioactively labeled protein revealed different outcomes. Moreover, the amounts of protein detected for the BMP2 variants coupled to microspheres were similar to that of the wild type protein. Therefore, it was not possible to conclude whether the BMP2 variants were covalently coupled or just adsorbed. BMP2 variants being immobilized to various microspheres induced osteogenic differentiation of C2C12 cells in vitro, but only in those cells that were located in close proximity to the functionalized beads. This selectivity strongly indicates that the protein is for a great portion covalently coupled and not just adsorbed. Moreover, the difference between the covalently coupled BMP2 variants and the adsorbed BMP2 WT was confirmed in vivo. Injection of the BMP2-functionalized microspheres in a rat model induced subcutaneous bone formation. The main aim of the animal experiment was to prove whether covalently coupled BMP2 induces bone formation at significant lower doses if compared to the amount being required if the protein is simply adsorbed. To this aim, several BMP2 concentrations were tested in this animal experiment. The BMP2 variants, being covalently immobilized, were hypothesized to be retained and therefore bio-available at the site of implantation for a prolonged time. However, in the animal experiments, lower doses of either coupled or adsorbed protein were unable to induce any bone formation within the 12 weeks. In contrast, the highest doses induced bone formation that was first detected at week 4. During the 12 weeks of the experiment, an increase in bone density and a steady state bone volume was observed. These results were obtained only for the covalently coupled BMP2 E83Azide but not for BMP2 E83Plk that did not induce bone formation in any condition. The negative outcome after application of BMP2 E83Plk suggested that the coupling reaction might have provoked changes in the protein structure that extremely influenced its osteogenic capabilities in vivo. However, the histological examination of the different ossicles induced either by BMP2 WT or BMP2 E83Azide, revealed clear morphological differences. BMP2 WT induced a bone shell-like structure, while the covalently coupled protein induced uniform bone formation also throughout the inner part. The differences between the two newly formed bones can be clearly associated with the different protein delivery mechanisms. Thus, the developed functionalized microspheres constitute a new interesting strategy that needs further investigations in order to be able to be used as replacement of the currently used BMP2 WT loaded medical devices.}, language = {en} } @phdthesis{Schuerlein2016, author = {Sch{\"u}rlein, Sebastian}, title = {Entwicklung von Technologien zur Optimierung von Tissue Engineering Prozessen am Beispiel der Herstellung von kardialem Gewebe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142432}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Kardiovaskul{\"a}re Erkrankungen, wie beispielsweise der Herzinfarkt, sind die h{\"a}ufigste Todesursache weltweit. Bei einem Herzinfarkt sterben Areale des Herzens aufgrund einer Unterversorgung mit Blut ab. Da das Herzmuskelgewebe ein sogenanntes terminal differenziertes Gewebe ist, kommt es zu keiner Regeneration des Gewebes, mit der Folge einer Herzinsuffizienz beziehungsweise dem Tod des Patienten. Eine alternative Behandlungsm{\"o}glichkeit zu einer Herztransplantation stellt das Tissue Engineering dar. Mit Hilfe des Tissue Engineerings k{\"o}nnen dreidimensionale Gewebe aufgebaut und kultiviert werden, um auf diese Weise ein funktionelles Gewebe zu erhalten, durch welches das abgestorbene Gewebeareal des Herzens zuk{\"u}nftig auch ersetzt werden k{\"o}nnte. In der vorliegenden Arbeit wurden notwendige Technologien f{\"u}r den Aufbau von Geweben entwickelt sowie erste Versuche f{\"u}r die Erzeugung eines funktionellen Herzmuskelgewebes durchgef{\"u}hrt. Beim Aufbau von dreidimensionalen Geweben finden Tr{\"a}gerstrukturen Anwendung, die mit Zellen besiedelt werden. Solche Tr{\"a}gerstrukturen k{\"o}nnen aus biologischen oder synthetischen Polymeren hergestellt sein oder aus der extrazellul{\"a}ren Matrix eines dezellularisierten Gewebes bestehen. F{\"u}r eine standardisierte Dezellularisierung von Geweben wurde eine computergesteuerte Pumpeneinheit, f{\"u}r die Herstellung von Nanofaserscaffolds eine Elektrospinninganlage entwickelt. Mit Hilfe der Dezellularisierungseinheit k{\"o}nnen komplexe Organe, wie ein Herz im Ganzen, reproduzierbar dezellularisiert werden. Untersuchungen der mittels Elektrospinning hergestellten Nanofaserscaffolds, welche als Alternative zu der dezellularisierten, nat{\"u}rlichen Matrix eingesetzt werden k{\"o}nnen, zeigten bei allen hergestellten Zusammensetzungen eine Orientierung der Zellen entlang der Fasern. Die Kultivierung von Zellmatrixkonstrukten erfolgt im Tissue Engineering h{\"a}ufig unter dynamischen Bedingungen. Hierf{\"u}r wurde ein mobiler Stand Alone Inkubator mit der erforderlichen Peripherie f{\"u}r eine Kultur unter Perfusion des Gewebes entwickelt. Als Weiterentwicklung des Stand Alone Inkubators ist eine modulare Bioreaktorplattform, bestehend aus W{\"a}rmetauscher, Beutelpumpe und Gasaustauscher, aufgebaut worden. In dieses System kann {\"u}ber Standard Anschl{\"u}sse jegliche Art von Bioreaktor in das System eingebunden werden. Durch die Kompaktheit des Systems ist es m{\"o}glich mehrere Ans{\"a}tze parallel auf engem Raum durchzuf{\"u}hren. Die Funktion der Plattform, wurde in der vorliegenden Arbeit durch die Gewebekultur einer nativen porzinen Karotis nachgewiesen. F{\"u}r den Aufbau des kardialen Gewebes dient die small intestinal submucosa ohne Serosa (SISser) als Tr{\"a}gerstruktur. Der Aufbau des Gewebekonstrukts erfolgte in verschiedenen Ans{\"a}tzen unter Einsatz verschiedener Zellarten. Native, aus Herzbiopsien generierte Cardiosphere derived cells (CDCs) verteilten sich gleichm{\"a}ßige {\"u}ber die Oberfl{\"a}che der Matrix, jedoch konnten immunhistologisch keine spezifischen kardialen Marker bei den artifiziellen Geweben nachgewiesen werden. Zellmatrixkonstrukte aus einer Mono Kultur von Kardiomyozyten, differenziert aus induzierten pluripotenten Stammzellen (iPS Zellen) sowie einer Co Kultur dieser Kardiomyozyten mit mesenchymalen Stammzellen und Zellen aus einer Herzbiopsie zeigten nach wenigen Tagen in Kultur ein kontraktiles Verhalten. Immunhistologische F{\"a}rbungen der beiden Gewebe best{\"a}tigten die Expression der spezifischen kardialen Marker, wie beispielsweise kardiales Troponin T, kardiales Troponin C und alpha Actinin. Die Kardiomyozyten der Mono Kultur sind jedoch nicht {\"u}ber die gesamte Matrixoberfl{\"a}che verteilt, sondern bilden Aggregate. Bei der Co Kultur kann eine gleichm{\"a}ßige Verteilung der Zellen auf der Matrix beobachtet werden. Der vielversprechendste Ansatz f{\"u}r den Aufbau eines Herzmuskelgewebes, welches als Implantat oder Testsystem eingesetzt werden kann, bildet nach den in dieser Arbeit erzielten Ergebnissen, ein Konstrukt aus der SISser und der Co Kultur der Zellen. Allerdings muss die Zusammensetzung der Co Kultur sowie das Verh{\"a}ltnis der Zellzahlen optimiert werden.}, subject = {Tissue Engineering}, language = {de} } @phdthesis{Schoenwaelder2016, author = {Sch{\"o}nw{\"a}lder, Sina Maria Siglinde}, title = {Entwicklung und Charakterisierung von Gelatine-basierten Hydrogelen und PLGA-basierten Janus-Partikeln}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142636}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Zusammenfassung In der Regenerativen Medizin sind polymerbasierte Biomaterialien von großer Bedeutung f{\"u}r die Entwicklung und Anwendung verbesserter bzw. neuer Therapien. Die Erforschung der Oberfl{\"a}cheneigenschaften von Biomaterialien, welche als Implantate eingesetzt werden, ist eine grundlegende Voraussetzung f{\"u}r deren erfolgreichen Einsatz. Die Protein-Oberfl{\"a}chen- Interaktion geschieht initial, sobald ein Implantat mit K{\"o}rperfl{\"u}ssigkeiten oder mit Gewebe in Kontakt kommt, und tr{\"a}gt maßgeblich zur direkten Wechselwirkung von Implantat und umgebenden Zellen bei. Dieser Prozess wird in der vorliegenden Arbeit an Gelatine untersucht. Daher bestand ein Ziel darin, stabile, nanometerd{\"u}nne Gelatineoberfl{\"a}chen herzustellen und darauf die Adsorption von humanen Plasmaproteinen und bakteriellen Proteinen zu analysieren. Die Abscheidung der Gelatinefilme in variabler Schichtdicke auf zuvor mit PPX-Amin modifizierten Oberfl{\"a}chen wurde unter Verwendung eines Rotationsbeschichters durchgef{\"u}hrt. Um stabile Hydrogelfilme zu erhalten, wurden die Amingruppen der disaggregierten Gelatinefibrillen untereinander und mit denen der Amin-Modifizierung durch ein biokompatibles Diisocyanat quervernetzt. Dieser Prozess lieferte einen reproduzierbaren und chemisch stabilen Gelatinefilm, welcher durch die substratunabh{\"a}ngige Amin-Modifizierung kovalent auf unterschiedlichste Oberfl{\"a}chen aufgebracht werden konnte. Die durch den Herstellungsprozess pr{\"a}zise eingestellte Schichtdicke (Nano- bzw. Mikrometermaßstab) wurde mittels Ellipsometrie und Rasterkraftmikroskopie ermittelt. Die ebenso bestimmte Rauheit war unabh{\"a}ngig von der Schichtdicke sehr gering. Gelatinefilme, die auf funktionalisierte und strukturierte Proben aufgebracht wurden, konnten durch Elektronenmikroskopie dargestellt werden. Mit Hilfe der Infrarot-Reflexions-Absorptions-Spektroskopie wurden die Gelatinefilme im Hinblick auf ihre Stabilit{\"a}t chemisch charakterisiert. Zur Quantifizierung der Adsorption humaner Plasmaproteine (Einzelproteinl{\"o}sungen) und komplexer Proteingemische aus steril filtrierten Kultur{\"u}berst{\"a}nden des humanpathogenen Bakteriums Pseudomonas aeruginosa wurde die Quarzkristall-Mikrowaage mit Dissipations{\"u}berwachung eingesetzt. Hiermit konnte nicht nur die adsorbierte Menge an Proteinen auf dem Gelatinehydrogel bzw. Referenzoberfl{\"a}chen (Gold, PPX-Amin, Titan), sondern auch die viskoelastischen Eigenschaften des adsorbierten Proteinfilms bestimmt werden. Allgemein adsorbierte auf dem Gelatinehydrogel eine geringere Proteinmasse im Vergleich zu den Referenzoberfl{\"a}chen. Circa ein Viertel der adsorbierten Proteine migrierte in die Poren des gequollenen Gels und ver{\"a}nderte dessen viskoelastische Eigenschaften. Durch anschließende MALDI-ToF/MS- und MS/MS-Analyse konnten die bakteriellen Proteine auf den untersuchten Oberfl{\"a}chen identifiziert und untereinander verglichen werden. Hierbei zeigten sich nur geringf{\"u}gige Unterschiede in der Proteinzusammensetzung. Zudem wurde eine Sekund{\"a}rionenmassenspektrometrie mit Flugzeitanalyse an reinen Gelatinefilmen und an mit humanen Plasmaproteinen beladenen Gelatinefilmen durchgef{\"u}hrt. Durch eine anschließende multivariante Datenanalyse konnte zwischen den untersuchten Proben eindeutig differenziert werden. Dieser Ansatz erm{\"o}glicht es, die Adsorption von unterschiedlichen Proteinen auf proteinbasierten Oberfl{\"a}chen markierungsfrei zu untersuchen und kann zur Aufkl{\"a}rung der in vivo-Situation beitragen. Dar{\"u}ber hinaus bietet dieser Untersuchungsansatz neue Perspektiven f{\"u}r die Gestaltung und das schnelle und effiziente Screening von unterschiedlichen Proteinzusammensetzungen. Biomaterialien k{\"o}nnen jedoch nicht nur als Implantate oder Implantatbeschichtungen eingesetzt werden. Im Bereich des drug delivery und der Depotarzneimittel sind biologisch abbaubare Polymere, aufgrund ihrer variablen Eigenschaften, von großem Interesse. Die Behandlung von bakteriellen und fungalen Pneumonien stellt insbesondere bei Menschen mit Vorerkrankungen wie Cystische Fibrose oder prim{\"a}re Ziliendyskinesie eine große Herausforderung dar. Oral oder intraven{\"o}s applizierte Wirkstoffe erreichen die Erreger aufgrund der erh{\"o}hten Z{\"a}higkeit des Bronchialsekretes oft nicht in ausreichender Konzentration. Daher besteht ein weiteres Ziel der vorliegenden Arbeit darin, mittels electrohydrodynamic cojetting mikrometergroße, inhalierbare, wirkstoffbeladene Partikel mit zwei Kompartimenten (Janus-Partikel) herzustellen und deren Eignung f{\"u}r die therapeutische Anwendung bei Lungeninfektionen zu untersuchen. Durch das in dieser Arbeit entwickelte L{\"o}sungsmittelsystem k{\"o}nnen Janus-Partikel aus biologisch abbaubaren Co-Polymeren der Polymilchs{\"a}ure (Poly(lactid-co-glycolid), PLGA) hergestellt und mit verschiedenen Wirkstoffen beladen werden. Darunter befinden sich ein Antibiotikum (Aztreonam, AZT), ein Antimykotikum (Itraconazol, ICZ), ein Mukolytikum (Acetylcystein, ACC) und ein Antiphlogistikum (Ibuprofen, IBU). Die Freisetzung der eingelagerten Wirkstoffe, mit Ausnahme von ICZ, konnte unter physiologischen Bedingungen mittels Dialyse und anschließender Hochleistungsfl{\"u}ssigkeitschromatographie gemessen werden. Die Freisetzungsrate wird von der Kettenl{\"a}nge des Polymers beeinflusst, wobei eine k{\"u}rzere Kettenl{\"a}nge zu einer schnelleren Freisetzung f{\"u}hrt. Das in die Partikel eingelagerte Antimykotikum zeigte in vitro eine gute Wirksamkeit gegen Aspergillus nidulans. Durch das Einlagern von ICZ in die Partikel ist es m{\"o}glich diesen schlecht wasserl{\"o}slichen Wirkstoff in eine f{\"u}r Patienten zug{\"a}ngliche und wirksame Applikationsform zu bringen. In Interaktion mit P. aeruginosa erzielten die mit Antibiotikum beladenen Partikel in vitro bessere Ergebnisse als der Wirkstoff in L{\"o}sung, was sich in einem in vivo-Infektionsmodell mit der Wachsmotte Galleria mellonella best{\"a}tigte. AZT-beladene Partikel hatten gegen{\"u}ber einer identischen Wirkstoffmenge in L{\"o}sung eine 27,5\% bessere {\"U}berlebensrate der Wachsmotten zur Folge. Des Weiteren hatten die Partikel keinen messbaren negativen Einfluss auf die Wachsmotten. Dreidimensionale Atemwegsschleimhautmodelle, hergestellt mit Methoden des Tissue Engineerings, bildeten die Basis f{\"u}r Untersuchungen der Partikel in Interaktion mit humanen Atemwegszellen. Die Untersuchung von Apoptose- und Entz{\"u}ndungsmarkern im {\"U}berstand der 3D-Modelle zeigte diesbez{\"u}glich keinen negativen Einfluss der Partikel auf die humanen Zellen. Diese gut charakterisierten und standardisierten in vitro-Testsysteme machen es m{\"o}glich, Medikamentenuntersuchungen an menschlichen Zellen durchzuf{\"u}hren. Hinsichtlich der histologischen Architektur und funktionellen Eigenschaften der 3D-Modelle konnte eine hohe in vitro-/in vivo-Korrelation zu menschlichem Gewebe festgestellt werden. Humane Mucine auf den 3D-Modellen dienten zur Untersuchung der schleiml{\"o}senden Wirkung von ACC-beladenen Partikeln. Standen diese in r{\"a}umlichem Kontakt zu den Mucinen, wurde deren Z{\"a}higkeit durch das freigesetzte ACC herabgesetzt, was qualitativ mittels histologischen Methoden best{\"a}tigt werden konnte. Die in dieser Arbeit entwickelten Herstellungsprotokolle dienen als Grundlage und k{\"o}nnen f{\"u}r die Synthese {\"a}hnlicher Systeme, basierend auf anderen Polymeren und Wirkstoffen, modifiziert werden. Gelatine und PLGA erwiesen sich als vielseitig einsetzbare Werkstoffe und bieten eine breite Anwendungsvielfalt in der Regenerativen Medizin, was die erzielten Resultate bekr{\"a}ftigen.}, subject = {Gelatine}, language = {de} } @phdthesis{Schweinlin2016, author = {Schweinlin, Matthias Oliver}, title = {Development of advanced human intestinal in vitro models}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142571}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The main function of the small intestine is the absorption of essential nutrients, water and vitamins. Moreover, it constitutes a barrier protecting us from toxic xenobiotics and pathogens. For a better understanding of these processes, the development of intestinal in vitro models is of great interest to the study of pharmacological and pathological issues such as transport mechanisms and barrier function. Depending on the scientific questions, models of different complexity can be applied. In vitro Transwell® systems based on a porous PET-membrane enable the standardized study of transport mechanisms across the intestinal barrier as well as the investigation of the influence of target substances on barrier integrity. However, this artificial setup reflects only limited aspects of the physiology of the native small intestine and can pose an additional physical barrier. Hence, the applications of this model for tissue engineering are limited. Previously, tissue models based on a biological decellularized scaffold derived from porcine gut tissue were demonstrated to be a good alternative to the commonly used Transwell® system. This study showed that preserved biological extracellular matrix components like collagen and elastin provide a natural environment for the epithelial cells, promoting cell adhesion and growth. Intestinal epithelial cells such as Caco-2 cultured on such a scaffold showed a confluent, tight monolayer on the apical surface. Additionally, myofibroblasts were able to migrate into the scaffold supporting intestinal barrier formation. In this thesis, dendritic cells were additionally introduced to this model mimicking an important component of the immune system. This co-culture model was then successfully proven to be suitable for the screening of particle formulations developed as delivery system for cancer antigens in peroral vaccination studies. In particular, nanoparticles based on PLGA, PEG-PAGE-PLGA, Mannose-PEG-PAGE-PLGA and Chitosan were tested. Uptake studies revealed only slight differences in the transcellular transport rate among the different particles. Dendritic cells were shown to phagocytose the particles after they have passed the intestinal barrier. The particles demonstrated to be an effective carrier system to transport peptides across the intestinal barrier and therefore present a useful tool for the development of novel drugs. Furthermore, to mimic the complex structure and physiology of the gut including the presence of multiple different cell types, the Caco-2 cell line was replaced by primary intestinal cells to set up a de novo tissue model. To that end, intestinal crypts including undifferentiated stem cells and progenitor cells were isolated from human small intestinal tissue samples (jejunum) and expanded in vitro in organoid cultures. Cells were cultured on the decellularized porcine gut matrix in co-culture with intestinal myofibroblasts. These novel tissue models were maintained under either static or dynamic conditions. Primary intestinal epithelial cells formed a confluent monolayer including the major differentiated cell types positive for mucin (goblet cells), villin (enterocytes), chromogranin A (enteroendocrine cells) and lysozyme (paneth cells). Electron microscopy images depicted essential functional units of an intact epithelium, such as microvilli and tight junctions. FITC-dextran permeability and TEER measurements were used to assess tightness of the cell layer. Models showed characteristic transport activity for several reference substances. Mechanical stimulation of the cells by a dynamic culture system had a great impact on barrier integrity and transporter activity resulting in a tighter barrier and a higher efflux transporter activity. In Summary, the use of primary human intestinal cells combined with a biological decellularized scaffold offers a new and promising way to setup more physiological intestinal in vitro models. Maintenance of primary intestinal stem cells with their proliferation and differentiation potential together with adjusted culture protocols might help further improve the models. In particular, dynamic culture systems and co culture models proofed to be a first crucial steps towards a more physiological model. Such tissue models might be useful to improve the predictive power of in vitro models and in vitro in vivo correlation (IVIVC) studies. Moreover, these tissue models will be useful tools in preclinical studies to test pharmaceutical substances, probiotic active organisms, human pathogenic germs and could even be used to build up patient-specific tissue model for personalized medicine.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Schwedhelm2019, author = {Schwedhelm, Ivo Peter}, title = {A non-invasive microscopy platform for the online monitoring of hiPSC aggregation in suspension cultures in small-scale stirred tank bioreactors}, doi = {10.25972/OPUS-19298}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192989}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The culture of human induced pluripotent stem cells (hiPSCs) at large-scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Suspension cul- tures of hiPSCs are characterized by the self-aggregation of single cells into macroscopic cell aggre- gates that increase in size over time. The development of these free-floating aggregates is dependent on the culture vessel and thus represents a novel process parameter that is of particular interest for hiPSC suspension culture scaling. Further, aggregates surpassing a critical size are prone to spon- taneous differentiation or cell viability loss. In this regard, and, for the first time, a hiPSC-specific suspension culture unit was developed that utilizes in situ microscope imaging to monitor and to characterize hiPSC aggregation in one specific CSTR setup to a statistically significant degree while omitting the need for error-prone and time-intensive sampling. For this purpose, a small-scale CSTR system was designed and fabricated by fused deposition modeling (FDM) using an in-house 3D- printer. To provide a suitable cell culture environment for the CSTR system and in situ microscope, a custom-built incubator was constructed to accommodate all culture vessels and process control devices. Prior to manufacture, the CSTR design was characterized in silico for standard engineering parameters such as the specific power input, mixing time, and shear stress using computational fluid dynamics (CFD) simulations. The established computational model was successfully validated by comparing CFD-derived mixing time data to manual measurements. Proof for system functionality was provided in the context of long-term expansion (4 passages) of hiPSCs. Thereby, hiPSC aggregate size development was successfully tracked by in situ imaging of CSTR suspensions and subsequent automated image processing. Further, the suitability of the developed hiPSC culture unit was proven by demonstrating the preservation of CSTR-cultured hiPSC pluripotency on RNA level by qRT-PCR and PluriTest, and on protein level by flow cytometry.}, subject = {Induzierte pluripotente Stammzelle}, language = {en} } @phdthesis{Schwab2017, author = {Schwab, Andrea}, title = {Development of an osteochondral cartilage defect model}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155617}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The limited intrinsic self-healing capability of articular cartilage requires treatment of cartilage defects. Material assisted and cell based therapies are in clinical practice but tend to result in formation of mechanical inferior fibro-cartilage in long term follow up. If a lesion has not been properly restored degenerative diseases are diagnosed as late sequela causing pain and loss in morbidity. Complex three dimensional tissue models mimicking physiological situation allow investigation of cartilage metabolism and mechanisms involved in repair. A standardized and reproducible model cultured under controllable conditions ex vivo to maintain tissue properties is of relevance for comparable studies. Topic of this thesis was the establishment of an cartilage defect model that allows for testing novel biomaterials and investigate the effect of defined defect depths on formation of repair tissue. In part I an ex vivo osteochondral defect model was established based on isolation of porcine osteochondral explants (OCE) from medial condyles, 8 mm in diameter and 5 mm in height. Full thickness cartilage defects with 1 mm to 4 mm in diameter were created to define ex vivo cartilage critical size after 28 days culture with custom developed static culture device. In part II of this thesis hydrogel materials, namely collagen I isolated from rat tail, commercially available fibrin glue, matrix-metalloproteinase clevable poly(ethylene glycol) polymerized with heparin (starPEGh), methacrylated poly(N-(2-hydroxypropyl) methacrylamide mono-dilactate-poly(ethylene glycol) triblock copolymer/methacrylated hyaluronic acid (MP/HA), thiol functionalized HA/allyl functionalized poly(glycidol) (P(AGE/G)-HA-SH), were tested cell free and chondrocyte loaded (20 mio/ml) as implant in 4 mm cartilage defects to investigate cartilage regeneration. Reproducible chondral defects, 8 mm in diameter and 1 mm in height, were generated with an artificial tissue cutter (ARTcut®) to investigate effect of defect depth on defect regeneration in part III. In all approaches OCE were analyzed by Safranin-O staining to visualize proteoglycans in cartilage and/or hydrogels. Immuno-histological and -fluorescent stainings (aggrecan, collagen II, VI and X, proCollagen I, SOX9, RUNX2), gene expression analysis (aggrecan, collagen II and X, SOX9, RUNX2) of chondrocyte loaded hydrogels (part II) and proteoglycan and DNA content (Part I \& II) were performed for detailed analysis of cartilage regeneration. Part I: The development of custom made static culture device, consisting of inserts in which OCE is fixed and deep well plate, allowed tissue specific media supply without supplementation of TGF � . Critical size diameter was defined to be 4 mm. Part II: Biomaterials revealed differences in cartilage regeneration. Collagen I and fibrin glue showed presence of cells migrated from OCE into cell free hydrogels with indication of fibrous tissue formation by presence of proCollagen I. In chondrocyte loaded study cartilage matrix proteins aggrecan, collagen II and VI and transcription factor SOX9 were detected after ex vivo culture throughout the two natural hydrogels collagen I and fibrin glue whereas markers were localized in pericellular matrix in starPEGh. Weak stainings resulted for MP/HA and P(AGE/G)-HA-SH in some cell clusters. Gene expression data and proteoglycan quantification supported histological findings with tendency of hypertrophy indicated by upregulation of collagen X and RunX2 in MP/HA and P(AGE/G)-HA-SH. Part III: In life-dead stainings recruitment of cells from OCE into empty or cell free collagen I treated chondral defects was seen. Separated and tissue specific media supply is critical to maintain ECM composition in cartilage. Presence of OCE stimulates cartilage matrix synthesis in chondrocyte loaded collagen I hydrogel and reduces hypertrophy compared to free swelling conditions and pellet cultures. Differences in cartilage repair tissue formation resulted in preference of natural derived polymers compared to synthetic based materials. The ex vivo cartilage defect model represents a platform for testing novel hydrogels as cartilage materials, but also to investigate the effect of cell seeding densities, cell gradients, cell co-cultures on defect regeneration dependent on defect depth. The separated media compartments allow for systematic analysis of pharmaceutics, media components or inflammatory cytokines on bone and cartilage metabolism and matrix stability.}, subject = {Hyaliner Knorpel}, language = {en} } @phdthesis{SchmidtgebSchmid2023, author = {Schmidt [geb. Schmid], Freia Florina}, title = {Ein dreidimensionales kutanes Melanommodell f{\"u}r den Einsatz in der pr{\"a}klinischen Testung}, doi = {10.25972/OPUS-32925}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-329255}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Das maligne Melanom nimmt als Tumorerkrankung mit hoher Metastasierungsrate und steigenden Inzidenzraten bei h{\"o}chster Mortalit{\"a}t aller Hauttumoren eine zunehmende Bedeutung in der modernen Onkologie ein. Fr{\"u}hzeitige Diagnosem{\"o}glichkeiten und moderne Behandlungen konnten das {\"U}berleben der Patienten bereits erheblich verbessern. Jedoch besteht nach wie vor Bedarf an geeigneten Modellen, um die Melanomprogression vollst{\"a}ndig zu verstehen und neue wirksame Therapien zu entwickeln. Hierf{\"u}r werden h{\"a}ufig Tiermodelle verwendet, diese spiegeln jedoch nicht die menschliche Mikroumgebung wider. Zweidimensionalen Zellkulturen fehlen dagegen entscheidende Elemente der Tumormikroumgebung. Daher wurde in dieser Arbeit ein dreidimensionales epidermales Tumormodell des malignen Melanoms, welches aus prim{\"a}ren humanen Keratinozyten und verschiedenen Melanomzelllinien besteht, entwickelt. Die eingesetzten Melanomzelllinien variieren in ihren Treibermutationen, wodurch das Modell in der Lage ist, Wirkstoffe zu untersuchen, die spezifisch auf diese Mutationen wirken. Mit Techniken des Tissue Engineerings konnte ein dreidimensionales Hautmodell aufgebaut werden, das alle charakteristischen Schichten der Epidermis aufweist und im Bereich des stratum basale Melanomcluster ausbildet. Diese reichen je nach Gr{\"o}ße und Ausdehnung bis in suprabasale Epidermisschichten hinein. Die Tumor-Histopathologie, der Tumorstoffwechsel sowie tumorassoziierte Proteinsekretionen ließen sich im in vitro Modell nachweisen. Dar{\"u}ber hinaus konnte ein Protokoll entwickelt werden, mit dem einzelne Zellen aus den Modellen reisoliert werden k{\"o}nnen. Dies erm{\"o}glichte es, den Proliferationszustand innerhalb des jeweiligen Modells zu charakterisieren und die Wirkung von Antitumortherapien gezielt zu bewerten. Die Anwendbarkeit als Testsystem im Bereich der Tumortherapeutika wurde mit dem in der Klinik h{\"a}ufig verwendeten v-raf-Maus-Sarkom-Virus-Onkogen-Homolog B (BRAF)-Inhibitor Vemurafenib demonstriert. Der selektive BRAF-Inhibitor reduzierte erfolgreich das Tumorwachstum in den Modellen mit BRAF-mutierten Melanomzellen, was durch eine Verringerung der metabolischen Aktivit{\"a}t, der proliferierenden Zellen und des Glukoseverbrauchs gezeigt wurde. F{\"u}r die Implementierung des Modells in die pr{\"a}klinische Therapieentwicklung wurde B-B-Dimethylacrylshikonin, ein vielversprechender Wirkstoffkandidat, welcher einen Zellzyklusarrest mit anschließender Apoptose bewirkt, im Modell getestet. Bei einer Anwendung der Modelle im Bereich der Testung topischer Behandlungen ist eine Barrierefunktion der Modelle notwendig, die der in vivo Situation nahe kommt. Die Barriereeigenschaften der Haut{\"a}quivalente wurden durch die Melanomzellen nachweislich nicht beeinflusst, sind aber im Vergleich zur in vivo Situation noch unzureichend. Eine signifikante Steigerung der Hautbarriere konnte durch die Bereitstellung von Lipiden und die Anregung hauteigener Regenerationsprozesse erreicht werden. {\"U}ber den Nachweis des transepidermalen Wasserverlusts konnte eine Messmethode zur nicht-invasiven Bestimmung der Hautbarriere etabliert und {\"u}ber den Vergleich zur Impedanzspektroskopie validiert werden. Hierbei gelang es, erstmals die Korrelation der Hautmodelle zur in vivo Situation {\"u}ber ein solches Verfahren zu zeigen. Das entwickelte epidermale Modell konnte durch die Integration eines dermalen Anteils und einer Endothelzellschicht noch weiter an die komplexe Struktur und Physiologie der Haut angepasst werden um Untersuchungen, die mit der Metastierung und Invasion zusammenh{\"a}ngen, zu erm{\"o}glichen. Die artifizielle Dermis basiert auf einem Kollagen-Hydrogel mit prim{\"a}ren Fibroblasten. Eine dezellularisierte Schweinedarmmatrix ließ sich zur Erweiterung des Modells um eine Endothelzellschicht nutzen. Dabei wanderten die prim{\"a}ren Fibroblasten apikal in die nat{\"u}rliche Schweindarmmatrix ein, w{\"a}hrend die Endothelzellen basolateral eine geschlossene Schicht bildeten. Die in dieser Arbeit entwickelten Gewebemodelle sind in der Lage, die Vorhersagekraft der in vitro Modelle und die in vitro - in vivo Korrelation zu verbessern. Durch die Kombination des Melanommodells mit einer darauf abgestimmten Analytik wurde ein neuartiges Werkzeug f{\"u}r die pr{\"a}klinische Forschung zur Testung von pharmazeutischen Wirkstoffen geschaffen.}, subject = {Tissue Engineering}, language = {de} } @phdthesis{SchliermanngebStratmann2023, author = {Schliermann [geb. Stratmann], Anna Theresa}, title = {The Role of FGF Receptor 2 in GDF5 mediated Signal Transduction}, doi = {10.25972/OPUS-19288}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192889}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Bone morphogenetic proteins (BMPs) are involved in various aspects of cell-cell communication in complex life forms. They act as morphogens, help differentiate different cell types from different progenitor cells in development, and are involved in many instances of intercellular communication, from forming a body axis to healing bone fractures, from sugar metabolism to angiogenesis. If the same protein or protein family carries out many functions, there is a demand to regulate and fine-tune their biological activities, and BMPs are highly regulated to generate cell- and context-dependent outcomes. Not all such instances can be explained yet. Growth/differentiation factor (GDF)5 (or BMP14) synergizes with BMP2 on chondrogenic ATDC5 cells, but antagonizes BMP2 on myoblastic C2C12 cells. Known regulators of BMP2/GDF5 signal transduction failed to explain this context-dependent difference, so a microarray was performed to identify new, cell-specific regulatory components. One identified candidate, the fibroblast growth factor receptor (FGFR)2, was analyzed as a potential new co-receptor to BMP ligands such as GDF5: It was shown that FGFR2 directly binds BMP2, GDF5, and other BMP ligands in vitro, and FGFR2 was able to positively influence BMP2/GDF5-mediated signaling outcome in cell-based assays. This effect was independent of FGFR2s kinase activity, and independent of the downstream mediators SMAD1/5/8, p42/p44, Akt, and p38. The elevated colocalization of BMP receptor type IA and FGFR2 in the presence of BMP2 or GDF5 suggests a signaling complex containing both receptors, akin to other known co-receptors of BMP ligands such as repulsive guidance molecules. This unexpected direct interaction between FGF receptor and BMP ligands potentially opens a new category of BMP signal transduction regulation, as FGFR2 is the second receptor tyrosine kinase to be identified as BMP co-receptor, and more may follow. The integration of cell surface interactions between members of the FGF and BMP family especially may widen the knowledge of such cellular communication mechanisms which involve both growth factor families, including morphogen gradients and osteogenesis, and may in consequence help to improve treatment options in osteochodnral diseases.}, subject = {Molekularbiologie}, language = {en} } @phdthesis{Sahraizadeh2014, author = {Sahraizadeh, Heidar}, title = {Das Leben mit PEG-Sonde : Probleme, Zufriedenheit der Betroffenen, Auswirkungen auf die Lebensqualit{\"a}t - Ergebnisse einer prospektiven Studie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137286}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In der vorliegenden Studie wurden 220 Patientinnen und Patienten prospektiv 1 Jahr lang nach der Anlage einer PEG-Sonde verfolgt. Die Studie sollte der Frage nachgehen, welche Patienten bzw. welche Indikationsgruppen in welchem Umfang von einer PEG-Anlage kurz- oder langfristig profitieren. Außerdem wurde die Zufriedenheit der Patienten, ihrer Angeh{\"o}rigen, Betreuer und Haus{\"a}rzte sowie auf den Einfluss einer PEG-Anlage und der Sondenern{\"a}hrung auf die Lebensqualit{\"a}t der Betroffenen untersucht. Die Befragung wurde {\"u}ber strukturierte Telefoninterviews nach 7 Tagen, 4 Wochen und dann im Abstand von jeweils 3 Monaten bis abschließend ein Jahr nach Sondenanlage durchgef{\"u}hrt. Die Gesamtheit der Patienten setzte sich zu 41\% aus Frauen und 59\% aus M{\"a}nnern zusammen. Das Durchschnittsalter lag bei 72 Jahren, die Altersspanne bewegte sich zwischen 39 und 97 Jahren. Es zeigte sich eine außergew{\"o}hnlich hohe Zufriedenheit aller Befragten mit der PEG-Sonde und deren Auswirkung auf die Lebensqualit{\"a}t. 95,7\% der befragten Patienten beurteilten ihre Zufriedenheit mit der PEG als sehr gut oder gut. Der Grad der Zufriedenheit war auch bei den Angeh{\"o}rigen, Pflegekr{\"a}ften und {\"A}rzten sehr hoch: 94\%, 95,2\% und 92\% bewerteten die PEG mit sehr gut/ gut. Die wenigen negativen Beurteilungen basierten im Wesentlichen auf Komplikationen, die in Verbindung mit der Sondenern{\"a}hrung auftraten, und auf dem Hinterfragen der Notwendigkeit der PEG-Anlagen. Unterschiede zwischen den einzelnen Indikationsgruppen gaben die Befragten mit einer Ausnahme nicht an. W{\"a}hrend Angeh{\"o}rige und Pflegekr{\"a}fte ihre hohe Zustimmung zur PEG auch bei den Demenzkranken zum Ausdruck brachten (100\%, bzw. 95\% sehr gute/gute Bewertung), lassen die Haus{\"a}rzte in dieser Indikation gewisse Vorbehalte erkennen. 9,1\% vergaben die Noten mangelhaft/ungen{\"u}gend und weitere 13,6\% die Bewertung befriedigend/ausreichend. Sie begr{\"u}nden ihre Kritik mit ethischen und medizinischen {\"U}berlegungen. Zusammenfassend best{\"a}tigt sich die PEG in dieser prospektiven Studie als sichere und effektive Maßnahme zur enteralen Ern{\"a}hrung. Die Indikationsstellung darf nicht nur den Erhalt oder die Steigerung des K{\"o}rpergewichtes ber{\"u}cksichtigen, sondern sollte auch die Aspekte wie Komorbidit{\"a}ten, Prognose und nicht zuletzt Allgemeinzustand und Lebensqualit{\"a}t der Patienten beachten. Nach einer PEG-Anlage ist die allgemeine Zufriedenheit bei Patienten Angeh{\"o}rigen, Pflegekr{\"a}ften und {\"A}rzten fast ausnahmslos sehr hoch.}, subject = {Enterale Ern{\"a}hrung}, language = {de} } @phdthesis{Ruecker2019, author = {R{\"u}cker, Christoph}, title = {Development of a prevascularized bone implant}, doi = {10.25972/OPUS-17886}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178869}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The skeletal system forms the mechanical structure of the body and consists of bone, which is hard connective tissue. The tasks the skeleton and bones take over are of mechanical, metabolic and synthetic nature. Lastly, bones enable the production of blood cells by housing the bone marrow. Bone has a scarless self-healing capacity to a certain degree. Injuries exceeding this capacity caused by trauma, surgical removal of infected or tumoral bone or as a result from treatment-related osteonecrosis, will not heal. Critical size bone defects that will not heal by themselves are still object of comprehensive clinical investigation. The conventional treatments often result in therapies including burdening methods as for example the harvesting of autologous bone material. The aim of this thesis was the creation of a prevascularized bone implant employing minimally invasive methods in order to minimize inconvenience for patients and surgical site morbidity. The basis for the implant was a decellularized, naturally derived vascular scaffold (BioVaSc-TERM®) providing functional vessel structures after reseeding with autologous endothelial cells. The bone compartment was built by the combination of the aforementioned scaffold with synthetic β-tricalcium phosphate. In vitro culture for tissue maturation was performed using bioreactor technology before the testing of the regenerative potential of the implant in large animal experiments in sheep. A tibia defect was treated without the anastomosis of the implant's innate vasculature to the host's circulatory system and in a second study, with anastomosis of the vessel system in a mandibular defect. While the non-anastomosed implant revealed a mostly osteoconductive effect, the implants that were anastomosed achieved formation of bony islands evenly distributed over the defect. In order to prepare preconditions for a rapid approval of an implant making use of this vascularization strategy, the manufacturing of the BioVaSc-TERM® as vascularizing scaffold was adjusted to GMP requirements.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Ruppert2019, author = {Ruppert, Simon}, title = {Einsatz der Raman-Spektroskopie zur Analyse der mitochondrialen Funktion im Isch{\"a}mie-Reperfusions-Schaden des Herzens}, doi = {10.25972/OPUS-17930}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179302}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Der myokardiale Isch{\"a}mie-Reperfusions-Schaden (IR) hat eine hohe Relevanz in der Kardiologie und Herzchirurgie. Trotz intensiver Forschung ist es bislang nicht gelungen, eine effektive Therapie des IR in den klinischen Alltag zu implementieren. Mitochondrien spielen im IR eine wichtige Rolle. Die Raman-Spektroskopie mit Laserquellen von 785 nm Wellenl{\"a}nge erlaubt die nicht-invasive Analyse pathophysiologischer Prozesse in vitro in Echtzeit. Daher eignet sich die Raman-spektroskopische Analyse von Mitochondrien m{\"o}glicherweise dazu, notwendige neue Einblicke in die Pathophysiologie des myokardialen IR zu gewinnen. Die vorliegende Arbeit analysierte die mitochondriale Funktion von subsarkolemmalen Mitochondrien im IR mit Hilfe bekannter Methoden. Anschließend erfolgte ein Vergleich der etablierten Methode „Clark-Elektrode" mit der neu etablierten Raman-Spektroskopie zur Analyse der mitochondrialen Funktion im IR.}, subject = {Isch{\"a}mie}, language = {de} } @phdthesis{Rossi2017, author = {Rossi, Angela Francesca}, title = {Development of functionalized electrospun fibers as biomimetic artificial basement membranes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137618}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The basement membrane separates the epithelium from the stroma of any given barrier tissue and is essential in regulating cellular behavior, as mechanical barrier and as structural support. It further plays an important role for new tissue formation, homeostasis, and pathological processes, such as diabetes or cancer. Breakdown of the basement membrane is believed to be essential for tumor invasion and metastasization. Since the basement membrane is crucial for many body functions, the development of artificial basement membranes is indispensable for the ultimate formation of engineered functional tissue, however, challenging due to their complex structure. Electrospinning enables the production of fibers in the nano- or microscale range with morphological similarities to the randomly orientated collagen and elastic fibers in the basement membrane. However, electrospun fibers often lack the functional similarity to guide cells and maintain tissue-specific functions. Hence, their possible applications as matrix structure for tissue engineering are limited. Herein, the potential of polyester meshes, modified with six armed star-shaped pre-polymers and cell-adhesion-mediating peptides, was evaluated to act as functional isotropic and bipolar artificial basement membranes. Thereby, the meshes were shown to be biocompatible and stable including under dynamic conditions, and the degradation profile to correlate with the rate of new tissue formation. The different peptide sequences did not influence the morphology and integrity of the fibers. The modified membranes exhibited protein-repellent properties over 12 months, indicating the long-term stability of the cross-linked star-polymer surfaces. Cell culture experiments with primary fibroblasts and a human keratinocyte cell line (HaCaT) revealed that cell adhesion and growth strongly depends on the peptide sequences and their combinations employed. HaCaT cells grew to confluence on membranes modified with a combination of laminin/collagen type IV derived binding sequences and with a combination of fibronectin/laminin/collagen type IV derived peptide sequences. Fibroblasts strongly adhered to the fibronectin derived binding sequence and to membranes containing a combination of fibronectin/laminin/collagen type IV derived peptide sequences. The adhesion and growth of fibroblasts and HaCaT cells were significantly reduced on membranes modified with laminin, as well as collagen IV derived peptide sequences. HaCaT cells and fibroblasts barely adhered onto meshes without peptide sequences. Co-culture experiments at the air-liquid interface with fibroblasts and HaCaT cells confirmed the possibility of creating biocompatible, biofunctional and biomimetic isotropic and bipolar basement membranes, based on the functionalized fibers. HaCaT cells grew in several layers, differentiating towards the surface and expressing cytokeratin 10 in the suprabasal and cytokeratin 14 in the basal layers. Migration of fibroblasts into the electrospun membrane was shown by vimentin staining. Moreover, specific staining against laminin type V, collagen type I, III, IV and fibronectin illustrated that cells started to remodel the electrospun membrane and produced new extracellular matrix proteins following the adhesion to the synthetic surface structures. The culturing of primary human skin keratinocytes proved to be difficult on electrospun fibers. Cells attached to the membrane, but failed to form a multilayered, well-stratified, and keratinized epidermal layer. Changing the fiber composition and fixation methods did not promote tissue development. Further investigations of the membrane demonstrated the tremendous influence of the pore size of the membrane on epithelial formation. Furthermore, primary keratinocytes reacted more sensitive to pH changes in the medium than HaCaT cells did. Since primary keratinocytes did not adequately develop on the functionalized meshes, polycarbonate membranes were used instead of electrospun meshes to establish oral mucosa models. The tissue-engineered models represented important features of native human oral mucosa. They consisted of a multilayered epithelium with stratum basale, stratum spinosum, stratum granulosum, and stratum corneum. The models formed a physical barrier and the expression of characteristic cell markers was comparable with that in native human oral mucosa. The results from the ET-50 assay and the irritation study reflected the reproducibility of the tissue equivalents. Altogether, electrospinning enables the production of fibers with structural similarity to the basement membrane. Incorporating extracellular matrix components to mimic the functional composition offers a safe and promising way to modify the fibers so that they can be used for different tissue engineering applications. The resultant biomimetic membranes that can be functionalized with binding sequences derived from widely varying proteins can be used as a toolbox to study the influence of isotropic and bipolar basement membranes on tissue formation and matrix remodeling systematically, with regards to the biochemical composition and the influence and importance of mono- and co-culture. The oral mucosa models may be useful for toxicity and permeation studies, to monitor the irritation potential of oral health care products and biomaterials or as a disease model.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Rosenbaum2016, author = {Rosenbaum, Corinna}, title = {The role of enteric glial cells under inflammatory conditions of the intestine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138946}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The enteric nervous system (ENS) innervates the gastrointestinal (GI) tract and controls central aspects of GI physiology including contractility of the intestinal musculature, glandular secretion and intestinal blood flow. The ENS is composed of neurons that conduct electrical signals and of enteric glial cells (EGCs). EGCs resemble central nervous system (CNS) astrocytes in their morphology and in the expression of shared markers such as the intermediate filament protein glial fibrillary acidic protein (GFAP). They are strategically located at the interface of ENS neurons and their effector cells to modulate intestinal motility, epithelial barrier stability and inflammatory processes. The specific contributions of EGCs to the maintenance of intestinal homeostasis are subject of current research. From a clinical point of view EGC involvement in pathophysiological processes such as intestinal inflammation is highly relevant. Like CNS astrocytes ECGs can acquire a reactive, tissue-protective phenotype in response to intestinal injury. In patients with chronic inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis, alterations in the EGC network are well known, particularly a differential expression of GFAP, which is a hallmark of reactive gliosis in the CNS. With increasing recognition of the role of EGCs in intestinal health and disease comes the need to study the glial population in its complexity. The overall aim of this thesis was to comprehensively study EGCs with focus on the reactive GFAP-expressing subpopulation under inflammatory conditions in vivo and in vitro. In a first step, a novel in vivo rat model of acute systemic inflammation mimicking sepsis was employed to investigate rapidly occuring responses of EGCs to inflammation. This study revealed that within a short time frame of a few hours, EGCs responded to the inflammation with an upregulation of Gfap gene expression. This inflammation-induced upregulation was confined to the myenteric plexus and varied in intensity along the intestinal rostro-caudal axis. This highly responsive myenteric GFAP-expressing EGC population was further characterized in vivo andin vitro using a transgenic mouse model (hGFAP-eGFP mice). Primary purified murine GFAP-EGC cultures in vitro were established and it was assessed how the transcriptomic and proteomic profiles of these cells change upon inflammatory stimulation. Here, myenteric GFAP-EGCs were found to undergo a shift in gene expression profile that predominantly affects expression of genes associated with inflammatory responses. Further, a secretion of inflammatory mediators was validated on protein level. The GFAP+ subpopulation is hence an active participant in inflammatory pathophysiology. In an acute murine IBD model in vivo, GFAP-EGCs were found to express components of the major histocompatibility complex (MHC) class II in inflamed tissue, which also indicates a crosstalk of EGCs with the innate and the adaptive lamina propria immune system in acute inflammation. Taken together, this work advances our knowledge on EGC (patho-)physiology by identifying and characterizing an EGC subpopulation rapidly responsive to inflammation. This study further provides the transcriptomic profile of this population in vivo and in vitro, which can be used to identify targets for therapeutic intervention. Due to the modulating influence of EGCs on the intestinal microenvironment, the study further underlines the importance of integrating EGCs into in vitro test systems that aim to model intestinal tissues in vitro and presents an outlook on a potential strategy.}, subject = {Darmwandnervensystem}, language = {en} }