@phdthesis{Vogt2014, author = {Vogt, Gernot}, title = {Future changes and signal analyses of climate means and extremes in the Mediterranean Area deduced from a CMIP3 multi-model ensemble}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117369}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Considering its social, economic and natural conditions the Mediterranean Area is a highly vulnerable region by designated affections of climate change. Furthermore, its climatic characteristics are subordinated to high natural variability and are steered by various elements, leading to strong seasonal alterations. Additionally, General Circulation Models project compelling trends in specific climate variables within this region. These circumstances recommend this region for the scientific analyses conducted within this study. Based on the data of the CMIP3 database, the fundamental aim of this study is a detailed investigation of the total variability and the accompanied uncertainty, which superpose these trends, in the projections of temperature, precipitation and sea-level pressure by GCMs and their specific realizations. Special focus in the whole study is dedicated to the German model ECHAM5/MPI-OM. Following this ambition detailed trends and mean values are calculated and displayed for meaningful time periods and compared to reanalysis data of ERA40 and NCEP. To provide quantitative comparison the mentioned data are interpolated to a common 3x3° grid. The total amount of variability is separated in its contributors by the application of an Analysis of Variance (ANOVA). For individual GCMs and their ensemble-members this is done with the application of a 1-way ANOVA, separating a treatment common to all ensemble-members and variability perturbating the signal given by different initial conditions. With the 2-way ANOVA the projections of numerous models and their realizations are analysed and the total amount of variability is separated into a common treatment effect, a linear bias between the models, an interaction coefficient and the residuals. By doing this, the study is fulfilled in a very detailed approach, by considering yearly and seasonal variations in various reasonable time periods of 1961-2000 to match up with the reanalysis data, from 1961-2050 to provide a transient time period, 2001-2098 with exclusive regard on future simulations and 1901-2098 to comprise a time period of maximum length. The statistical analyses are conducted for regional-averages on the one hand and with respect to individual grid-cells on the other hand. For each of these applications the SRES scenarios of A1B, A2 and B1 are utilized. Furthermore, the spatial approach of the ANOVA is substituted by a temporal approach detecting the temporal development of individual variables. Additionally, an attempt is made to enlarge the signal by applying selected statistical methods. In the detailed investigation it becomes evident, that the different parameters (i.e. length of temporal period, geographic location, climate variable, season, scenarios, models, etc…) have compelling impact on the results, either in enforcing or weakening them by different combinations. This holds on the one hand for the means and trends but also on the other hand for the contributions of the variabilities affecting the uncertainty and the signal. While temperature is a climate variable showing strong signals across these parameters, for precipitation mainly the noise comes to the fore, while for sea-level pressure a more differentiated result manifests. In turn, this recommends the distinguished consideration of the individual parameters in climate impact studies and processes in model generation, as the affecting parameters also provide information about the linkage within the system. Finally, an investigation of extreme precipitation is conducted, implementing the variables of the total amount of heavy precipitation, the frequency of heavy-precipitation events, the percentage of this heavy precipitation to overall precipitation and the mean daily intensity from events of heavy precipitation. Each time heavy precipitation is defined to exceed the 95th percentile of overall precipitation. Consecutively mean values of these variables are displayed for ECHAM5/MPI-OM and the multi-model mean and climate sensitivities, by means of their difference between their average of the past period of 1981-2000 and the average of one of the future periods of 2046-2065 or 2081-2100. Following this investigation again an ANOVA is conducted providing a quantitative measurement of the severity of change of trends in heavy precipitation across several GCMs. Besides it is a difficult task to account for extreme precipitation by GCMs, it is noteworthy that the investigated models differ highly in their projections, resulting partially in a more smoothed and meaningful multi-model mean. Seasonal alterations of the strength of this behaviour are quantitatively supported by the ANOVA.}, subject = {Klimaschwankung}, language = {en} } @phdthesis{Awoye2015, author = {Awoye, Oy{\´e}monbad{\´e} Herv{\´e} Rodrigue}, title = {Implications of future climate change on agricultural production in tropical West Africa: evidence from the Republic of Benin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122887}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Environmental interlinked problems such as human-induced land cover change, water scarcity, loss in soil fertility, and anthropogenic climate change are expected to affect the viability of agriculture and increase food insecurity in many developing countries. Climate change is certainly the most serious of these challenges for the twenty-first century. The poorest regions of the world - tropical West Africa included - are the most vulnerable due to their high dependence on climate and weather sensitive activities such as agriculture, and the widespread poverty that limits the institutional and economic capacities to adapt to the new stresses brought about by climate change. Climate change is already acting negatively on the poor smallholders of tropical West Africa whose livelihoods dependent mainly on rain-fed agriculture that remains the cornerstone of the economy in the region. Adaptation of the agricultural systems to climate change effects is, therefore, crucial to secure the livelihoods of these rural communities. Since information is a key for decision-making, it is important to provide well-founded information on the magnitude of the impacts in order to design appropriate and sustainable adaptation strategies. Considering the case of agricultural production in the Republic of Benin, this study aims at using large-scale climatic predictors to assess the potential impacts of past and future climate change on agricultural productivity at a country scale in West Africa. Climate signals from large-scale circulation were used because state-of-the art regional climate models (RCM) still do not perfectly resolve synoptic and mesoscale convective processes. It was hypothesised that in rain-fed systems with low investments in agricultural inputs, yield variations are widely governed by climatic factors. Starting with pineapple, a perennial fruit crops, the study further considered some annual crops such as cotton in the group of fibre crops, maize, sorghum and rice in the group of cereals, cowpeas and groundnuts belonging to the legume crops, and cassava and yams which are root and tuber crops. Thus the selected crops represented the three known groups of photosynthetic pathways (i.e. CAM, C3, and C4 plants). In the study, use was made of the historical agricultural yield statistics for the Republic of Benin, observed precipitation and mean near-surface air temperature data from the Climatic Research Unit (CRU TS 3.1) and the corresponding variables simulated by the regional climate model (RCM) REMO. REMO RCM was driven at its boundaries by the global climate model ECHAM 5. Simulations with different greenhouse gas concentrations (SRES-A1B and B1 emission scenarios) and transient land cover change scenarios for present-day and future conditions were considered. The CRU data were submitted to empirical orthogonal functions analysis over the north hemispheric part of Africa to obtain large-scale observed climate predictors and associated consistent variability modes. REMO RCM data for the same region were projected on the derived climate patterns to get simulated climate predictors. By means of cross-validated Model Output Statistics (MOS) approach combined with Bayesian model averaging (BMA) techniques, the observed climate predictors and the crop predictand were further on used to derive robust statistical relationships. The robust statistical crop models perform well with high goodness-of-fit coefficients (e.g. for all combined crop models: 0.49 ≤ R2 ≤ 0.99; 0.28 ≤ Brier-Skill-Score ≤ 0.90). Provided that REMO RCM captures the main features of the real African climate system and thus is able to reproduce its inter-annual variability, the time-independent statistical transfer functions were then used to translate future climate change signal from the simulated climate predictors into attainable crop yields/crop yield changes. The results confirm that precipitation and air temperature governed agricultural production in Benin in general, and particularly, pineapple yield variations are mainly influenced by temperature. Furthermore, the projected yield changes under future anthropogenic climate change during the first-half of the 21st century amount up to -12.5\% for both maize and groundnuts, and -11\%, -29\%, -33\% for pineapple, cassava, and cowpeas respectively. Meanwhile yield gain of up to +10\% for sorghum and yams, +24\% for cotton, and +39\% for rice are expected. Over the time period 2001 - 2050, on average the future yield changes range between -3\% and -13\% under REMO SRES-B1 (GHG)+LCC, -2\% and -11\% under REMO SRES-A1B (GHG only),and -3\% and -14\% under REMO SRES-A1B (GHG)+LCC for pineapple, maize, sorghum, groundnuts, cowpeas and cassava. In the meantime for yams, cotton and rice, the average yield gains lie in interval of about +2\% to +7\% under REMO SRES-B1 (GHG)+LCC, +0.1\% and +12\% under REMO SRES-A1B (GHG only), and +3\% and +10\% under REMO SRES-A1B (GHG)+LCC. For sorghum, although the long-term average future yield depicts a reduction there are tendencies towards increasing yields in the future. The results also reveal that the increases in mean air temperature more than the changes in precipitation patterns are responsible for the projected yield changes. As well the results suggest that the reductions in pineapple yields cannot be attributed to the land cover/land use changes across sub-Saharan Africa. The production of groundnuts and in particular yams and cotton will profit from the on-going land use/land cover changes while the other crops will face detrimental effects. Henceforth, policymakers should take effective measures to limit the on-going land degradation processes and all other anthropogenic actions responsible for temperature increase. Biotechnological improvement of the cultivated crop varieties towards development of set of seed varieties adapted to hotter and dry conditions should be included in the breeding pipeline programs. Amongst other solutions, application of appropriate climate-smart agricultural practices and conservation agriculture are also required to offset the negative impacts of climate change in agriculture.}, subject = {Benin}, language = {en} }