@phdthesis{BeitzenHeineke2015, author = {Beitzen-Heineke, Antonia}, title = {Invariant Natural Killer T cells possess immune-modulating functions during \(Aspergillus\) \(fumigatus\) infection}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144966}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Aspergillus fumigatus is the most common cause for invasive fungal infections, a disease associated with high mortality in immune-compromised patients. CD1d-restricted invariant Natural Killer T (iNKT) cells compose a small subset of T cells known to impact the immune response towards various infectious pathogens. To investigate the role of human iNKT cells during A. fumigatus infection, we studied their activation as determined by CD69 expression and cytokine production in response to distinct fungal morphotypes in the presence of different CD1d⁺ antigen presenting cells using flow cytometry and multiplex ELISA. Among CD1d⁺ subpopulations, CD1d⁺CD1c⁺ mDCs showed the highest potential to activate iNKT cells on a per cell basis. The presence of A. fumigatus decreased this effect of CD1d⁺CD1c⁺ mDCs on iNKT cells and led to reduced secretion of TNF-α, G-CSF and RANTES. Production of other Th1 and Th2 cytokines was not affected by the fungus, suggesting an immune-modulating function for human iNKT cells during A. fumigatus infection.}, subject = {Aspergillus fumigatus}, language = {en} } @phdthesis{GarciaGuerrero2017, author = {Garcia Guerrero, Estefania}, title = {Strategies to Obtain Tumor-Reactive Cells for Cancer Immunotherapy by Cell Sorting and Genetic Modifications of T Lymphocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150547}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Recent advances in the field of cancer immunotherapy have enabled this therapeutic approach to enter the mainstream of modern cancer treatment. In particular, adoptive T cell therapy (ACT) is a potentially powerful immunotherapy approach that relies on the administration of tumor-specific T cells into the patient. There are several strategies to obtain tumor-reactive cytotoxic T lymphocytes (CTLs), which have already been shown to induce remarkable responses in the clinical setting. However, there are concerns and limitations regarding the conventional approaches to obtain tumor-reactive T cells, such as accuracy of the procedure and reproducibility. Therefore, we aimed to develop two approaches to improve the precision and efficacy of tumor-reactive T cells therapy. These two techniques could constitute effective, safe and broadly applicable alternatives to the conventional methods for obtaining tumor-specific CTLs. The first approach of this study is the so called "Doublet Technology". Here, we demonstrate that peptide-human leukocyte antigen-T cell receptor (pHLA-TCR) interactions that involve immune reactive peptides are stable and strong. Therefore, the CTLs that are bound by their TCR to tumor cells can be selected and isolated through FACS-based cell sorting taking advantage of this stable interaction between the CTLs and the target cells. The CTLs from acute myeloid leukemia (AML) patients obtained with this technique show cytolytic activity against blast cells suggesting a potential clinical use of these CTLs. "Doublet Technology" offers a personalized therapy in which there is no need for a priori knowledge of the exact tumor antigen. The second approach of this study is the Chimeric Antigen Receptor (CAR) Technology. We design several CARs targeting the B-Cell Maturation Antigen (BCMA). BCMA CAR T cells show antigen-specific cytolytic activity, production of cytokines including IFN-γ and IL-2, as well as productive proliferation. Although we confirm the presence of soluble BCMA in serum of multiple myeloma (MM) patients, we demonstrate that the presence of soluble protein does not abrogate the efficacy of BCMA CAR T cells suggesting that BCMA CAR T cells can be used in the clinical setting to treat MM patients. The high antigen specificity of CAR T cells allows efficient tumor cell eradication and makes CAR Technology attractive for broadly applicable therapies.}, subject = {Immunotherapy}, language = {en} } @phdthesis{Dagvadorj2016, author = {Dagvadorj, Nergui}, title = {Improvement of T-cell response against WT1-overexpressing leukemia by newly developed anti-hDEC205-WT1 antibody fusion proteins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149098}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Wilms tumor protein 1 (WT1) is a suitable target to develop an immunotherapeutic approach against high risk acute myeloid leukemia (AML), particularly their relapse after allogeneic hematopoietic stem cell transplantation (HSCT). As an intracellular protein traversing between nucleus and cytoplasm, recombinant expression of WT1 is difficult. Therefore, an induction of WT1-specific T-cell responses is mostly based on peptide vaccination as well as dendritic cell (DC) electroporation with mRNA encoding full-length protein to mount WT1-derived peptide variations presented to T cells. Alternatively, the WT1 peptide presentation could be broadened by forcing receptor-mediated endocytosis of DCs. In this study, antibody fusion proteins consisting of an antibody specific to the human DEC205 endocytic receptor and various fragments of WT1 (anti-hDEC205-WT1) were generated for a potential DC-targeted recombinant WT1 vaccine. Anti-hDEC205-WT1 antibody fusion proteins containing full-length or major parts of WT1 were not efficiently expressed and secreted due to their poor solubility and secretory capacity. However, small fragment-containing variants: anti-hDEC205-WT110-35, anti-hDEC205-WT191-138, anti-hDEC205-WT1223-273, and anti-hDEC205-WT1324-371 were obtained in good yields. Since three of these fusion proteins contain the most of the known immunogenic epitopes in their sequences, the anti-hDEC205-WT191-138, anti-hDEC205-WT1223-273, and anti-hDEC205-WT1324-371 were tested for their T-cell stimulatory capacities. Mature monocyte-derived DCs loaded with anti-hDEC205-WT191-138 could induce ex vivo T-cell responses in 12 of 16 blood samples collected from either healthy or HSC transplanted individuals compared to included controls (P < 0.01). Furthermore, these T cells could kill WT1-overexpressing THP-1 leukemia cells in vitro after expansion. In conclusion, alongside proving the difficulty in expression and purification of intracellular WT1 as a vaccine protein, our results from this work introduce an alternative therapeutic vaccine approach to improve an anti-leukemia immune response in the context of allogeneic HSCT and potentially beyond.}, subject = {Akute myeloische Leuk{\"a}mie}, language = {en} } @phdthesis{Wallstabe2022, author = {Wallstabe, Lars}, title = {Development and preclinical evaluation of tumour-reactive T cells expressing a chemically programmable chimeric antigen receptor}, doi = {10.25972/OPUS-17907}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179071}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The genetic modification of T cells for the expression a chimeric antigen receptor (CAR) endows them with a new specificity for an antigen. Adoptive immunotherapy with CD19-CAR T cells has achieved high rates of sustained complete remissions in B cell malignancies. However, the downregulation or loss of the targeted antigen after mono-specific CAR T cell therapy, e.g. against CD19 or CD22, has been reported. Targeting multiple antigens on tumour cells, sequentially or simultaneously, could overcome this limitation. Additionally, targeting multiple antigens with CAR T cells could drive the translation from hematologic malignancies to prevalent solid cancers, which often express tumour-associated antigens heterogeneously. We hypothesised that expression of a universal CAR, which can be programmed with hapten-like molecules, could endow T cells with specificities for multiple antigens. In this study we introduce a novel chemically programmable CAR (cpCAR) based on monoclonal antibody h38C2. Our data show, that cpCARs form a reversible chemical bond to molecules containing a diketone-group and therefore can be programmed to acquire multiple specificities. We programmed cpCAR T cells with hapten-like compounds against integrins αvβ3 and α4β1 as well as the folate receptor. We observed tumour cell lysis, IFN ɣ and IL-2 production and proliferation of programmed cpCAR T cells against tumour cells expressing the respective target antigen in vitro. As a reference to cpCARs programmed against αvβ3, we further introduced novel conventional αvβ3-CARs. These CARs, based on humanised variants of monoclonal antibody LM609 (hLM609), directly bind to integrin αvβ3 via their scFv. The four αvβ3-CAR constructs comprised either an scFv with higher affinity (hLM609v7) or lower affinity (hLM609v11) against αvβ3 integrin and either a long (IgG4 hinge, CH2, CH3) or short (IgG4 hinge) extracellular spacer. We selected the hLM609v7-CAR with short spacer, which showed potent anti-tumour reactivity both in vitro and in a murine xenograft model, for comparison with the cpCAR programmed against αvβ3. Our data show specific lysis of αvβ3-positive tumour cells, cytokine production and proliferation of both hLM609-CAR T cells and cpCAR T cells in vitro. However, conventional hLM609-CAR T cells mediated stronger anti-tumour effects compared to cpCAR T cells in the same amount of time. In line with the in vitro data, complete destruction of tumour lesions in a murine melanoma xenograft model was only observed for mice treated with conventional αvβ3-CAR T cells. Collectively, we introduce a cpCAR, which can be programmed against multiple tumour antigens, and hLM609-CARs specific for the integrin αvβ3. The cpCAR technology bears the potential to counteract current limitations, e.g. antigen loss, of current monospecific CAR T cell therapy. Targeting αvβ3 integrin with CAR T cells could have clinical applications in the treatment of solid malignancies, because αvβ3 is not only expressed on a variety of solid malignancies, but also on tumour-associated vasculature and fibroblast.}, subject = {Tumorimmunologie}, language = {en} } @phdthesis{Mestermann2020, author = {Mestermann, Katrin}, title = {Pharmacological control of CAR T-cells by dasatinib}, doi = {10.25972/OPUS-18056}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180562}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Cellular therapies using chimeric antigen receptor (CAR) modified T cells to eradicate tumor cells have been a major breakthrough in the treatment of hematologic malignancies. However, there are no measures to control CAR T cell activity after infusion, which is mostly required in cases of CAR T cell overreaction, e.g. cytokine release syndrome, or in the case of T cell failure, e.g. caused by exhaustion. In our study, we identified the tyrosine kinase inhibitor (TKI) dasatinib (© Sprycel) as a suitable agent to steer CAR T cells in vitro and in vivo. We show that single treatment of CD4+ and CD8+ CAR T cells with dasatinib conferred either partial or complete inhibition, depending on the applied concentration. The blockade was immediate and encompassed spe-cific lysis, cytokine secretion and proliferation following antigen encounter. The mechanism relied on reduced phosphorylation of key kinases in the CAR signaling cascade, which led to abrogation of nuclear factor of activated T-cells (NFAT) signaling. Importantly, inhibition was fully reversible by dasatinib withdrawal. In vivo, dasatinib blocked CAR T cell function without impairing the engraftment of CAR T cells or their subsequent anti tumor function once dasatinib administration was discontinued. We therefore introduce dasatinib as a new tool to efficiently block CAR T cells in vitro and in vivo, with data suggesting that dasatinib can be used in a clinical setting to mitigate toxicity after adaptive transfer of CAR modified T cells and other forms of T cell based immunotherapy. Additionally we show that intermittent inhibition of CAR T cells by dasatinib im-proves the efficacy of CAR T cell therapy. By pausing T cells for short periods of time in vi-vo, upregulation of programmed death protein 1 (PD-1) and subsequent induction of exhaus-tion was prevented, which increased the expansion of T cells and the rate of tumor eradica-tion. Our data therefore suggest that dasatinib can additionally be used to overcome T cell exhaustion that is induced by massive tumor burden and upregulation of inhibitory receptors.}, subject = {Immuntherapie}, language = {en} } @phdthesis{Rydzek2019, author = {Rydzek, Julian}, title = {NF-κB/NFAT Reporter Cell Platform for Chimeric Antigen Receptor (CAR)-Library Screening}, doi = {10.25972/OPUS-17918}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179187}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Immunotherapy with engineered T cells expressing a tumor-specific chimeric antigen receptor (CAR) is under intense preclinical and clinical investigation. This involves a rapidly increasing portfolio of novel target antigens and CAR designs that need to be tested in time- and work-intensive screening campaigns in primary T cells. Therefore, we anticipated that a standardized screening platform, similar as in pharmaceutical small molecule and antibody discovery, would facilitate the analysis of CARs by pre-selecting lead candidates from a large pool of constructs that differ in their extracellular and intracellular modules. Because CARs integrate structural elements of the T cell receptor (TCR) complex and engage TCR-associated signaling molecules upon stimulation, we reasoned that the transcription factors nuclear factor-κB (NF-κB) and nuclear factor of activated T cells (NFAT) could serve as surrogate markers for primary T cell function. The nuclear translocation of both transcription factors in primary T cells, which we observed following CAR stimulation, supported our rationale to use NF-κB and NFAT as indicators of CAR-mediated activation in a screening platform. To enable standardized and convenient analyses, we have established a CAR-screening platform based on the human T cell lymphoma line Jurkat that has been modified to provide rapid detection of NF-κB and NFAT activation. For this purpose, Jurkat cells contained NF-κB and NFAT-inducible reporter genes that generate a duplex output of cyan fluorescent protein (CFP) and green fluorescent protein (GFP), respectively. Upon stimulation of NF-κB/NFAT reporter cells, the expression of both fluorophores could be readily quantified in high-throughput screening campaigns by flow cytometry. We modified the reporter cells with CD19-specific and ROR1-specific CARs, and we co-cultured them with antigen-positive stimulator cells to analyze NF-κB and NFAT activation. CAR-induced reporter signals could already be detected after 6 hours. The optimal readout window with high-level reporter activation was set to 24 hours, allowing the CAR-screening platform to deliver results in a rapid turnaround time. A reporter cell-screening campaign of a spacer library with CARs comprising a short, intermediate or long IgG4-Fc domain allowed distinguishing functional from non-functional constructs. Similarly, reporter cell-based analyses identified a ROR1-CAR with 4-1BB domain from a library with different intracellular signal modules due to its ability to confer high NF-κB activation, consistent with data from in vitro and in vivo studies with primary T cells. The results of both CAR screening campaigns were highly reproducible, and the time required for completing each testing campaign was substantially shorter with reporter cells (6 days) compared to primary T cells (21 days). We further challenged the reporter cells in a large-scale screening campaign with a ROR1 CAR library comprising mutations in the VH CDR3 sequence of the R11 scFv. This region is crucial for binding the R11 epitope of ROR1, and we anticipated that mutations here would cause a loss of specificity and affinity for most of the CAR variants. This provided the opportunity to determine whether the CAR screening platform was able to retrieve functional constructs from a large pool of CAR variants. Indeed, using a customized pre enrichment and screening strategy, the reporter cells identified a functional CAR variant that was present with a frequency of only 6 in 1.05x10^6. As our CAR-screening platform enabled the analysis of activating signal modules, it encouraged us to also evaluate inhibitory signal modules that change the CAR mode of action. Such an inhibitory CAR (iCAR) can be used in logic gates with an activating CAR to interfere with T cell stimulation. By selecting appropriate target antigens for iCAR and CAR, this novel application aims to improve the selectivity towards tumor cells, and it could readily be studied using our screening platform. Accordingly, we tested CD19-specific iCARs with inhibitory PD-1 signal module for their suppressive effect on reporter gene activation. In logic gates with CAR or TCR stimulation, a decrease of NF-κB and NFAT signals was only observed when activating and inhibitory receptors were forced into spatial proximity. These results were further verified by experiments with primary T cells. In conclusion, our reporter cell system is attractive as a platform technology because it is independent of testing in primary T cells, exportable between laboratories, and scalable to enable small- to large-scale screening campaigns of CAR libraries. The pre-selection of appropriate lead candidates with optimal extracellular and intracellular modules can reduce the number of CAR constructs to be investigated in further in vitro and in vivo studies with primary T cells. We are therefore confident that our CAR-screening platform based on NF-κB/NFAT reporter cells will be useful to accelerate translational research by facilitating the evaluation of CARs with novel design parameters.}, subject = {Antigenrezeptor}, language = {en} } @phdthesis{Weber2024, author = {Weber, Justus C.}, title = {Development and preclinical assessment of ROR2-specific CAR-T cells for the treatment of clear cell renal cell carcinoma and multiple myeloma}, doi = {10.25972/OPUS-31039}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-310399}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Adoptive immunotherapy using chimeric antigen receptor (CAR)-modified T cells is an effective treatment for hematological malignancies that are refractory to conventional chemotherapy. To address a wider variety of cancer entities, there is a need to identify and characterize additional target antigens for CAR-T cell therapy. The two members of the receptor tyrosine kinase-like orphan receptor family, ROR1 and ROR2, have been found to be overexpressed on cancer cells and to correlate with aggressive cancer phenotypes. Recently, ROR1-specific CAR-T cells have entered testing in phase I clinical trials, encouraging us to assess the suitability of ROR2 as a novel target for CAR-T cell therapy. To study the therapeutic potential of targeting ROR2 in solid and hematological malignancies, we selected two representative cancer entities with high unmet medical need: renal cell carcinoma and multiple myeloma. Our data show that ROR2 is commonly expressed on primary samples and cell lines of clear cell renal cell carcinoma and multiple myeloma. To study the efficacy of ROR2-specific CAR T cell therapy, we designed two CAR constructs with 10-fold binding affinity differences for the same epitope of ROR2. We found both cell products to exhibit antigen-specific anti-tumor reactivity in vitro, including tumor cell lysis, secretion of the effector cytokines interleukin-2 (IL-2) and interferon-gamma (IFNγ), and T cell proliferation. In vivo studies revealed ROR2 specific CAR-T cells to confer durable responses, significant survival benefits and long-term persistence of CAR-expressing T cells. Overall, there was a trend towards more potent anti-tumor efficacy upon treatment with T cells that expressed the CAR with higher affinity for ROR2, both in vitro and in vivo. We performed a preclinical safety and toxicology assessment comprising analyses of ROR2 expression in healthy human and murine tissues, cross-reactivity, and adoptive T cell transfer in immunodeficient mice. We found ROR2 expression to be conserved in mice, and low-level expression was detectable in the male and female reproductive system as well as parts of the gastrointestinal tract. CAR-T cells targeting human ROR2 were found to elicit similarly potent reactivity upon recognition of murine ROR2. In vivo analyses showed transient tissue-specific enrichment and activation of ROR2-specific CAR-T cells in organs with high blood circulation, such as lung, liver, or spleen, without evidence for clinical toxicity or tissue damage as determined by histological analyses. Furthermore, we humanized the CAR binding domain of ROR2-specific CAR-T cells to mitigate the risk of adverse immune reactions and concomitant CAR-T cell rejection. Functional analyses confirmed that humanized CARs retained their specificity and functionality against ROR2-positive tumor cells in vitro. In summary, we show that ROR2 is a prevalent target in RCC and MM, which can be addressed effectively with ROR2-specific CAR-T cells in preclinical models. Our preliminary toxicity studies suggest a favorable safety profile for ROR2-specific CAR-T cells. These findings support the potential to develop ROR2-specific CAR-T cells clinically to obtain cell products with broad utility.}, subject = {CAR-T-Zell-Therapie}, language = {en} }