@phdthesis{Brandt2020, author = {Brandt, Gregor A.}, title = {Gait Initiation in Parkinson's Disease: The Interplay of Dopamine and Postural Control}, doi = {10.25972/OPUS-21463}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214636}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Deterioration of gait and alterations of physiological gait initiation contribute significantly to the burden of disease in Parkinson's disease. This paper systematically investigates disease-specific alterations during the postural phases of gait initiation and demonstrates the influence of dopaminergic networks by assessing levodopa mediated improvements in motor performance and correlation of motor behavior with loss of striatal and cortical dopaminergic neurons. Particular attention is given to known confounders such as initial stance and anthropometrics.}, subject = {Parkinson-Krankheit}, language = {en} } @phdthesis{Palmisano2022, author = {Palmisano, Chiara}, title = {Supraspinal Locomotor Network Derangements: A Multimodal Approach}, doi = {10.25972/OPUS-26644}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266442}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Parkinson's Disease (PD) constitutes a major healthcare burden in Europe. Accounting for aging alone, ~700,000 PD cases are predicted by 2040. This represents an approximately 56\% increase in the PD population between 2005 and 2040, with a consequent rise in annual disease-related medical costs. Gait and balance disorders are a major problem for patients with PD and their caregivers, mainly because to their correlation with falls. Falls occur as a result of a complex interaction of risk factors. Among them, Freezing of Gait (FoG) is a peculiar gait derangement characterized by a sudden and episodic inability to produce effective stepping, causing falls, mobility restrictions, poor quality of life, and increased morbidity and mortality. Between 50-70\% of PD patients have FoG and/or falls after a disease duration of 10 years, only partially and inconsistently improved by dopaminergic treatment and Deep Brain Stimulation (DBS). Treatment-induced worsening has been also observed under certain conditions. Effective treatments for gait disturbances in PD are lacking, probably because of the still poor understanding of the supraspinal locomotor network. In my thesis, I wanted to expand our knowledge of the supraspinal locomotor network and in particular the contribution of the basal ganglia to the control of locomotion. I believe this is a key step towards new preventive and personalized therapies for postural and gait problems in patients with PD and related disorders. In addition to patients with PD, my studies also included people affected by Progressive Supranuclear Palsy (PSP). PSP is a rare primary progressive parkinsonism characterized at a very early disease stage by poor balance control and frequent backwards falls, thus providing an in vivo model of dysfunctional locomotor control. I focused my attention on one of the most common motor transitions in daily living, the initiation of gait (GI). GI is an interesting motor task and a relevant paradigm to address balance and gait impairments in patients with movement disorders, as it is associated with FoG and high risk of falls. It combines a preparatory (i.e., the Anticipatory Postural Adjustments [APA]) and execution phase (the stepping) and allows the study of movement scaling and timing as an expression of muscular synergies, which follow precise and online feedback information processing and integration into established feedforward patterns of motor control. By applying a multimodal approach that combines biomechanical assessments and neuroimaging investigations, my work unveiled the fundamental contribution of striatal dopamine to GI in patients with PD. Results in patients with PSP further supported the fundamental role of the striatum in GI execution, revealing correlations between the metabolic intake of the left caudate nucleus with diverse GI measurements. This study also unveiled the interplay of additional brain areas in the motor control of GI, namely the Thalamus, the Supplementary Motor Area (SMA), and the Cingulate cortex. Involvement of cortical areas was also suggested by the analysis of GI in patients with PD and FoG. Indeed, I found major alterations in the preparatory phase of GI in these patients, possibly resulting from FoG-related deficits of the SMA. Alterations of the weight shifting preceding the stepping phase were also particularly important in PD patients with FoG, thus suggesting specific difficulties in the integration of somatosensory information at a cortical level. Of note, all patients with PD showed preserved movement timing of GI, possibly suggesting preserved and compensatory activity of the cerebellum. Postural abnormalities (i.e., increased trunk and thigh flexion) showed no relationship with GI, ruling out an adaptation of the motor pattern to the altered postural condition. In a group of PD patients implanted with DBS, I further explored the pathophysiological functioning of the locomotor network by analysing the timely activity of the Subthalamic Nucleus (STN) during static and dynamic balance control (i.e., standing and walking). For this study, I used novel DBS devices capable of delivering stimulation and simultaneously recording Local Field Potentials (LFP) of the implanted nucleus months and years after surgery. I showed a gait-related frequency shift in the STN activity of PD patients, possibly conveying cortical (feedforward) and cerebellar (feedback) information to mesencephalic locomotor areas. Based on this result, I identified for each patient a Maximally Informative Frequency (MIF) whose power changes can reliably classify standing and walking conditions. The MIF is a promising input signal for new DBS devices that can monitor LFP power modulations to timely adjust the stimulation delivery based on the ongoing motor task (e.g., gait) performed by the patient (adaptive DBS). Altogether my achievements allowed to define the role of different cortical and subcortical brain areas in locomotor control, paving the way for a better understanding of the pathophysiological dynamics of the supraspinal locomotor network and the development of tailored therapies for gait disturbances and falls prevention in PD and related disorders.}, language = {en} } @phdthesis{Pozzi2020, author = {Pozzi, Nicol{\´o} Gabriele}, title = {Parkinson's disease revisited: multiple circuitopathies}, doi = {10.25972/OPUS-21671}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216715}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Parkinson's disease (PD) is among the most common neurodegenerative conditions, and it is characterized by the progressive loss of dopaminergic neurons and a great variability in clinical expression. Despite several effective medications, it still causes disability as all patients show treatment-resistant symptoms and complications. A possible reason for this therapeutic-burden and great clinical variability lies in a probable misconception about its pathophysiology, one that focuses on neurodegeneration, while largely neglecting its functional consequences and the related compensatory changes. In this thesis, I expand on the hypothesis that some PD symptoms have a dysfunctional origin and reflect derangements of neural network dynamics, the means by which brain coordination supports any motor behaviour. In particular, I have investigated resting tremor and freezing of gait, two common symptoms with an enigmatic mechanism and suboptimal management. In the case of tremor, I predicted a pathological change in response to dopamine loss, which included the activation of noradrenergic (NA) neurons of the locus coeruleus (LC) projecting to the cerebellum. This compensatory LC activation that supports dopaminergic neurons might indeed come at the expense of tremor development. To assess the role of LC-NA in tremor development, I recorded tremor occurrence in the reserpinized rat model of PD, one of very few showing tremor, after selective lesioning (with the neurotoxin DSP-4) of the LC-NA terminal axons. DSP-4 induced a severe reduction of LC-NA terminal axons in the cerebellar cortex and this was associated with a significant reduction in tremor development. Unlike its development, tremor frequency and the akinetic rigid signs did not differ between the groups, thus suggesting a dopaminergic dependency. These findings suggest that the LC-NA innervation of the cerebellum has a critical role for PD tremor, possibly by exerting a network effect, which gates the cerebello-thalamic-cortical circuit into pathological oscillations upon a dopaminergic loss in the basal ganglia. In contrast, for the study of freezing of gait, I worked with human PD subjects and deep brain stimulation, a therapeutic neuromodulation device that in some prototypes also allows the recording of neural activity in freely-moving subjects. Gait freezing is a disabling PD symptom that suddenly impairs effective stepping, thus causing falls and disability. Also in this study, I hypothesized that the underlying pathophysiology may be represented by dysfunctional neural network dynamics that abruptly impair locomotor control by affecting the communication in the supraspinal locomotor network. To test this hypothesis, I investigated the coupling between the cortex and the subthalamic nucleus, two main nodes of the supraspinal locomotor network, in freely-moving subjects PD patients and also performed molecular brain imaging of striatal dopamine receptor density and kinematic measurements. I found that in PD patients, walking is associated with cortical-subthalamic stable coupling in a low-frequency band (i.e. θ-α rhythms). In contrast, these structures decoupled when gait freezing occurred in the brain hemisphere with less dopaminergic innervation. These findings suggest that freezing of gait is a "circuitopathy", with dysfunctional cortical-subcortical communication. Altogether the results of my experiments support the hypothesis that the pathophysiology of PD goes beyond neurodegenerative (loss-of-function) processes and that derangement of neural network dynamics coincides with some disabling PD symptoms, thus suggesting that PD can be interpreted as the combination of multiple circuitopathies.}, subject = {Parkinson-Krankheit}, language = {en} }